Division of Fetal and Transitional Medicine, Fetal Medicine Institute, Children's National Health System, 111 Michigan Ave NW, Washington, DC, USA.
Division of Fetal and Transitional Medicine, Fetal Medicine Institute, Children's National Health System, 111 Michigan Ave NW, Washington, DC, USA.
Comput Biol Med. 2017 Aug 1;87:211-216. doi: 10.1016/j.compbiomed.2017.05.033. Epub 2017 Jun 2.
Due to the high-frequency of routine interventions in an intensive care setting, electrocardiogram (ECG) recordings from sick infants are highly non-stationary, with recurrent changes in the baseline, alterations in the morphology of the waveform, and attenuations of the signal strength. Current methods lack reliability in identifying QRS complexes (a marker of individual cardiac cycles) in the non-stationary ECG. In the current study we address this problem by proposing a novel approach to QRS complex identification.
Our approach employs lowpass filtering, half-wave rectification, and the use of instantaneous Hilbert phase to identify QRS complexes in the ECG. We demonstrate the application of this method using ECG recordings from eight preterm infants undergoing intensive care, as well as from 18 normal adult volunteers available via a public database. We compared our approach to the commonly used approaches including Pan and Tompkins (PT), gqrs, wavedet, and wqrs for identifying QRS complexes and then compared each with manually identified QRS complexes.
For preterm infants, a comparison between the QRS complexes identified by our approach and those identified through manual annotations yielded sensitivity and positive predictive values of 99% and 99.91%, respectively. The comparison metrics for each method are as follows: PT (sensitivity: 84.49%, positive predictive value: 99.88%), gqrs (85.25%, 99.49%), wavedet (95.24%, 99.86%), and wqrs (96.99%, 96.55%). Thus, the sensitivity values of the four methods previously described, are lower than the sensitivity of the method we propose; however, the positive predictive values of these other approaches is comparable to those of our method, with the exception of the wqrs approach, which yielded a slightly lower value. For adult ECG, our approach yielded a sensitivity of 99.78%, whereas PT yielded 99.79%. The positive predictive value was 99.42% for both our approach as well as for PT.
We propose a novel method for identifying QRS complexes that outperforms common currently available tools for non-stationary ECG data in infants. For stationary ECG our proposed approach and the PT approach perform equally well. The ECG acquired in a clinical environment may be prone to issues related to non-stationarity, especially in critically ill patients. The approach proposed in this report offers superior reliability in these scenarios.
由于在重症监护环境中经常进行常规干预,因此患病婴儿的心电图(ECG)记录极不稳定,基线反复变化,波形形态发生改变,信号强度减弱。目前的方法在识别非稳定 ECG 中的 QRS 复合波(单个心搏周期的标记)方面缺乏可靠性。在本研究中,我们通过提出一种新的 QRS 复合波识别方法来解决这个问题。
我们的方法采用低通滤波、半波整流和使用瞬时希尔伯特相位来识别 ECG 中的 QRS 复合波。我们使用来自 8 名接受重症监护的早产儿的 ECG 记录以及通过公共数据库获得的 18 名正常成年志愿者的 ECG 记录来演示该方法的应用。我们将我们的方法与常用的方法进行比较,包括 Pan 和 Tompkins(PT)、gqrs、wavedet 和 wqrs,用于识别 QRS 复合波,然后将每种方法与手动识别的 QRS 复合波进行比较。
对于早产儿,我们的方法识别的 QRS 复合波与手动注释识别的 QRS 复合波之间的比较,其灵敏度和阳性预测值分别为 99%和 99.91%。每种方法的比较指标如下:PT(灵敏度:84.49%,阳性预测值:99.88%)、gqrs(灵敏度:85.25%,阳性预测值:99.49%)、wavedet(灵敏度:95.24%,阳性预测值:99.86%)和 wqrs(灵敏度:96.99%,阳性预测值:96.55%)。因此,以前描述的四种方法的灵敏度值均低于我们提出的方法的灵敏度值;然而,这些其他方法的阳性预测值与我们的方法相当,除了 wqrs 方法的阳性预测值略低。对于成人 ECG,我们的方法的灵敏度为 99.78%,而 PT 的灵敏度为 99.79%。我们的方法和 PT 的阳性预测值均为 99.42%。
我们提出了一种用于识别 QRS 复合波的新方法,该方法在婴儿的非稳定 ECG 数据方面优于当前常用的工具。对于稳定的 ECG,我们提出的方法和 PT 方法的性能相当。在临床环境中获得的 ECG 可能容易受到与非稳定性相关的问题的影响,特别是在危重病患者中。本报告中提出的方法在这些情况下提供了更高的可靠性。