Heinrich Volkmar, Simpson Wooten D, Francis Emmet A
Department of Biomedical Engineering, University of California at Davis, Davis, CA, United States.
Front Immunol. 2017 May 26;8:578. doi: 10.3389/fimmu.2017.00578. eCollection 2017.
The ability of motile immune cells to detect and follow gradients of chemoattractant is critical to numerous vital functions, including their recruitment to sites of infection and-in emerging immunotherapeutic applications-to malignant tumors. Facilitated by a multitude of chemotactic receptors, the cells navigate a maze of stimuli to home in on their target. Distinct chemotactic processes direct this navigation at particular times and cell-target distances. The expedient coordination of this spatiotemporal hierarchy of chemotactic stages is the central element of a key paradigm of immunotaxis. Understanding this hierarchy is an enormous interdisciplinary challenge that requires, among others, quantitative insight into the shape, range, and dynamics of the profiles of chemoattractants around their sources. We here present a closed-form solution to a diffusion-reaction problem that describes the evolution of the concentration gradient of chemoattractant under various conditions. Our ready-to-use mathematical prescription captures many biological situations reasonably well and can be explored with standard graphing software, making it a valuable resource for every researcher studying chemotaxis. We here apply this mathematical model to characterize the chemoattractant cloud of anaphylatoxins that forms around bacterial and fungal pathogens in the presence of host serum. We analyze the spatial reach, rate of formation, and rate of dispersal of this locator cloud under realistic physiological conditions. Our analysis predicts that simply being small is an effective protective strategy of pathogens against complement-mediated discovery by host immune cells over moderate-to-large distances. Leveraging our predictions against single-cell, pure-chemotaxis experiments that use human immune cells as biosensors, we are able to explain the limited distance over which the cells recognize microbes. We conclude that complement-mediated chemotaxis is a universal, but short-range, homing mechanism by which chemotaxing immune cells can implement a last-minute course correction toward pathogenic microbes. Thus, the integration of theory and experiments provides a sound mechanistic explanation of the primary role of complement-mediated chemotaxis within the hierarchy of immunotaxis, and why other chemotactic processes are required for the successful recruitment of immune cells over large distances.
运动性免疫细胞检测并追踪趋化因子梯度的能力对于众多重要功能至关重要,包括它们被招募到感染部位,以及在新兴的免疫治疗应用中被招募到恶性肿瘤部位。在众多趋化受体的帮助下,这些细胞在一系列刺激中穿梭,以找到它们的目标。不同的趋化过程在特定时间和细胞与目标的距离下指导这种导航。这种趋化阶段时空层次的有效协调是免疫趋化关键范式的核心要素。理解这一层次结构是一项巨大的跨学科挑战,尤其需要对趋化因子源周围分布的形状、范围和动态进行定量洞察。我们在此提出了一个扩散反应问题的封闭形式解,该解描述了在各种条件下趋化因子浓度梯度的演变。我们现成可用的数学公式能较好地捕捉许多生物学情况,并且可以用标准绘图软件进行探究,这使其成为每个研究趋化作用的研究人员的宝贵资源。我们在此应用这个数学模型来描述在宿主血清存在的情况下,围绕细菌和真菌病原体形成的过敏毒素趋化因子云。我们分析了在实际生理条件下这个定位云的空间范围、形成速率和扩散速率。我们的分析预测,仅仅体积小就是病原体在中到远距离上对抗宿主免疫细胞补体介导发现的一种有效保护策略。利用我们的预测结果与使用人类免疫细胞作为生物传感器的单细胞纯趋化实验相对照,我们能够解释细胞识别微生物的有限距离。我们得出结论,补体介导的趋化作用是一种普遍但短程的归巢机制,通过这种机制,趋化的免疫细胞可以对致病微生物进行最后一刻的路径校正。因此,理论与实验的结合为补体介导的趋化作用在免疫趋化层次结构中的主要作用,以及为什么在远距离成功招募免疫细胞需要其他趋化过程提供了合理的机制解释。