Francis Emmet A, Heinrich Volkmar
Department of Biomedical Engineering, University of California, Davis, Davis, CA.
Yale J Biol Med. 2018 Sep 21;91(3):279-289. eCollection 2018 Sep.
Most current efforts to advance medical technology proceed along one of two tracks. The first is dedicated to the improvement of clinical tasks through the incremental refinement of medical instruments. The second comprises engineering endeavors to support basic science studies that often only remotely relate to human medicine. Here we survey emerging research approaches that aim to populate the sprawling frontier between these tracks. We focus on interdisciplinary single-live-cell techniques that have overcome limitations of traditional biological methods to successfully address vital questions about medically relevant cellular behavior. Most of the presented case studies are based on the controlled manipulation of nonadherent human immune cells using one or more micropipettes. The included studies have examined one-on-one encounters of immune cells with real or model pathogens, assessed the physiological role of the expandable surface area of immune cells, and started to dissect the spatiotemporal organization of signaling processes within these cells. The unique aptitude of such single-live-cell studies to fill conspicuous gaps in our quantitative understanding of medically relevant cause-effect relationships provides a sound basis for new insights that will inform and drive future biomedical innovation.
当前推动医学技术进步的大多数努力都沿着两条轨道之一进行。第一条致力于通过逐步改进医疗仪器来改善临床任务。第二条包括支持基础科学研究的工程努力,而这些研究往往与人类医学只有间接关联。在这里,我们审视旨在填补这两条轨道之间广阔空白领域的新兴研究方法。我们关注跨学科的单活细胞技术,这些技术克服了传统生物学方法的局限性,成功地解决了有关医学相关细胞行为的关键问题。所呈现的大多数案例研究基于使用一个或多个微量移液器对非贴壁人类免疫细胞进行的可控操作。纳入的研究已经考察了免疫细胞与真实或模型病原体的一对一接触,评估了免疫细胞可扩展表面积的生理作用,并开始剖析这些细胞内信号传导过程的时空组织。这种单活细胞研究在填补我们对医学相关因果关系的定量理解中明显空白方面的独特能力,为新的见解提供了坚实基础,这些见解将为未来的生物医学创新提供信息并推动其发展。