Suppr超能文献

使用R绘制列线图:在分类结局和生存数据中的应用

Drawing Nomograms with R: applications to categorical outcome and survival data.

作者信息

Zhang Zhongheng, Kattan Michael W

机构信息

Department of emergency medicine, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.

Department of Quantitative Health Sciences, Cleveland Clinic Foundation, Cleveland, Ohio, USA.

出版信息

Ann Transl Med. 2017 May;5(10):211. doi: 10.21037/atm.2017.04.01.

Abstract

Outcome prediction is a major task in clinical medicine. The standard approach to this work is to collect a variety of predictors and build a model of appropriate type. The model is a mathematical equation that connects the outcome of interest with the predictors. A new patient with given clinical characteristics can be predicted for outcome with this model. However, the equation describing the relationship between predictors and outcome is often complex and the computation requires software for practical use. There is another method called nomogram which is a graphical calculating device allowing an approximate graphical computation of a mathematical function. In this article, we describe how to draw nomograms for various outcomes with nomogram() function. Binary outcome is fit by logistic regression model and the outcome of interest is the probability of the event of interest. Ordinal outcome variable is also discussed. Survival analysis can be fit with parametric model to fully describe the distributions of survival time. Statistics such as the median survival time, survival probability up to a specific time point are taken as the outcome of interest.

摘要

结果预测是临床医学中的一项主要任务。开展这项工作的标准方法是收集各种预测因素并构建合适类型的模型。该模型是一个将感兴趣的结果与预测因素联系起来的数学方程。利用这个模型可以预测具有给定临床特征的新患者的结果。然而,描述预测因素与结果之间关系的方程通常很复杂,实际应用中需要软件进行计算。还有一种称为列线图的方法,它是一种图形计算工具,允许对数学函数进行近似的图形计算。在本文中,我们描述了如何使用nomogram()函数为各种结果绘制列线图。二元结果通过逻辑回归模型拟合,感兴趣的结果是感兴趣事件的概率。还讨论了有序结果变量。生存分析可以用参数模型拟合,以充分描述生存时间的分布。诸如中位生存时间、特定时间点的生存概率等统计量被视为感兴趣的结果。

相似文献

1
Drawing Nomograms with R: applications to categorical outcome and survival data.
Ann Transl Med. 2017 May;5(10):211. doi: 10.21037/atm.2017.04.01.
6
A new nomogram for prediction of outcome of pediatric shock-wave lithotripsy.
J Pediatr Urol. 2015 Apr;11(2):84.e1-6. doi: 10.1016/j.jpurol.2015.01.004. Epub 2015 Mar 5.
7
A generic nomogram for multinomial prediction models: theory and guidance for construction.
Diagn Progn Res. 2017 Apr 10;1:8. doi: 10.1186/s41512-017-0010-5. eCollection 2017.
8
Nomograms for predicting survival and recurrence in patients with adenoid cystic carcinoma. An international collaborative study.
Eur J Cancer. 2015 Dec;51(18):2768-76. doi: 10.1016/j.ejca.2015.09.004. Epub 2015 Nov 19.
9
How to build and interpret a nomogram for cancer prognosis.
J Clin Oncol. 2008 Mar 10;26(8):1364-70. doi: 10.1200/JCO.2007.12.9791.

引用本文的文献

2
Dynamic nomogram for predicting long-term survival in patients with brain abscess.
Chin Neurosurg J. 2025 Aug 7;11(1):15. doi: 10.1186/s41016-025-00402-w.
8
The unique role of cuproptosis in the prognosis and treatment of rectum adenocarcinoma.
J Gastrointest Oncol. 2025 Apr 30;16(2):367-385. doi: 10.21037/jgo-2025-105. Epub 2025 Apr 1.
9
Association between dietary flavonoid intake and anxiety: data from NHANES 2017-2018.
BMC Public Health. 2025 Apr 22;25(1):1477. doi: 10.1186/s12889-025-22621-7.

本文引用的文献

1
Residuals and regression diagnostics: focusing on logistic regression.
Ann Transl Med. 2016 May;4(10):195. doi: 10.21037/atm.2016.03.36.
2
Model building strategy for logistic regression: purposeful selection.
Ann Transl Med. 2016 Mar;4(6):111. doi: 10.21037/atm.2016.02.15.
3
Prognostic Nomogram for Thoracic Esophageal Squamous Cell Carcinoma after Radical Esophagectomy.
PLoS One. 2015 Apr 20;10(4):e0124437. doi: 10.1371/journal.pone.0124437. eCollection 2015.
4
What is a real nomogram?
Semin Oncol. 2010 Feb;37(1):23-6. doi: 10.1053/j.seminoncol.2009.12.003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验