Suppr超能文献

预测宫颈癌患者长期预后的列线图模型:巴西马托格罗索州的一项基于人群的研究

Nomogram model for predicting the long-term prognosis of cervical cancer patients: a population-based study in Mato Grosso, Brazil.

作者信息

Xavier Sancho Pedro, Galvão Noemi Dreyer, das Neves Marco Aurélio Bertúlio, da Silva Kátia Moreira, Almeida Adila de Queiroz Neves, Silva Ageo Mario Cândido da

机构信息

Federal University of Mato Grosso - Institute of Collective Health, Av. Fernando Correa da Costa, nº 2367 - Bairro Boa Esperança. Cuiabá - MT, Cuiaba, MT, 78060-900, Brazil.

State Secretary of Health of Mato Grosso, Cuiabá, Mato Grosso, Brazil.

出版信息

BMC Cancer. 2025 Apr 14;25(1):684. doi: 10.1186/s12885-025-14056-5.

Abstract

BACKGROUND

Cervical cancer (CC) is the third most common cancer among women worldwide and the second most prevalent neoplasm in Mato Grosso, Brazil, in 2020. This study aimed to analyze overall survival (OS), identify prognostic factors, and develop a nomogram to predict the long-term prognosis of CC patients using population-based data from Mato Grosso, Brazil.

METHODS

Integrated data from the Mortality Information System (SIM) and the Population-Based Cancer Registry (RCBP) were used for patients diagnosed with CC between 2001 and 2018. Group differences were analyzed using the Log-rank test, and survival analysis was performed using the Kaplan-Meier method. Univariable and multivariable Cox regression models were applied to identify predictors of OS. A nomogram was developed to predict OS at 1, 3, 5, and 10 years. The accuracy of the model was assessed using the C-index, receiver operating characteristic (ROC) curve, and calibration plots.

RESULTS

The median follow-up time was 12 years (range: 6.28 - 17.1). The OS rates at 1, 3, 5, and 10 years were 95.4%, 91.3%, 89.9%, and 88.3%, respectively. Age, histological type, and disease stage were identified as independent prognostic factors for OS. The C-index for OS was 0.869, and the areas under the ROC curve for 1, 3, 5, and 10 years were 0.910, 0.897, 0.895, and 0.884, respectively, indicating good discrimination. The nomogram demonstrated good agreement with the observed survival rates.

CONCLUSION

The developed nomogram predicts OS for CC patients at 1, 3, 5, and 10 years, showing good concordance with the observed survival rates and serving as a useful tool for guiding personalized interventions. Notably, disease staging and histopathological type were the most significant prognostic factors for OS.

摘要

背景

宫颈癌(CC)是全球女性中第三大常见癌症,2020年在巴西马托格罗索州是第二大流行肿瘤。本研究旨在分析总生存期(OS),确定预后因素,并使用巴西马托格罗索州基于人群的数据开发一种列线图来预测CC患者的长期预后。

方法

将死亡信息系统(SIM)和基于人群的癌症登记处(RCBP)的综合数据用于2001年至2018年期间诊断为CC的患者。使用对数秩检验分析组间差异,并使用Kaplan-Meier方法进行生存分析。应用单变量和多变量Cox回归模型来识别OS的预测因素。开发了一种列线图来预测1、3、5和10年的OS。使用C指数、受试者操作特征(ROC)曲线和校准图评估模型的准确性。

结果

中位随访时间为12年(范围:6.28 - 17.1)。1、3、5和10年的OS率分别为95.4%、91.3%、89.9%和88.3%。年龄、组织学类型和疾病分期被确定为OS的独立预后因素。OS的C指数为0.869,1、3、5和10年的ROC曲线下面积分别为0.910、0.897、0.895和0.884,表明具有良好的区分度。列线图与观察到的生存率显示出良好的一致性。

结论

所开发的列线图可预测CC患者1、3、5和10年的OS,与观察到的生存率显示出良好的一致性,并作为指导个性化干预的有用工具。值得注意的是,疾病分期和组织病理学类型是OS最重要的预后因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e228/11995657/4e2b989af11e/12885_2025_14056_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验