Department of Materials Science and Engineering, Stanford University , Stanford, California 94305, United States.
Institute of Functional Nano and Soft Materials, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123, China.
Nano Lett. 2017 Jul 12;17(7):4390-4399. doi: 10.1021/acs.nanolett.7b01460. Epub 2017 Jun 26.
Resistance switching in TiO and many other transition metal oxide resistive random access memory materials is believed to involve the assembly and breaking of interacting oxygen vacancy filaments via the combined effects of field-driven ion migration and local electronic conduction leading to Joule heating. These complex processes are very difficult to study directly in part because the filaments form between metallic electrode layers that block their observation by most characterization techniques. By replacing the top electrode layer in a metal-insulator-metal memory structure with easily removable liquid electrolytes, either an ionic liquid (IL) with high resistance contact or a conductive aqueous electrolyte, we probe field-driven oxygen vacancy redistribution in TiO thin films under conditions that either suppress or promote Joule heating. Oxygen isotope exchange experiments indicate that exchange of oxygen ions between TiO and the IL is facile at room temperature. Oxygen loss significantly increases the conductivity of the TiO films; however, filament formation is not observed after IL gating alone. Replacing the IL with a more conductive aqueous electrolyte contact and biasing does produce electroformed conductive filaments, consistent with a requirement for Joule heating to enhance the vacancy concentration and mobility at specific locations in the film.
在 TiO 和许多其他过渡金属氧化物电阻式随机存取存储器材料中,电阻切换被认为涉及通过场驱动离子迁移和局部电子传导的共同作用来组装和断裂相互作用的氧空位丝,从而导致焦耳加热。这些复杂的过程很难直接研究,部分原因是丝在金属电极层之间形成,这阻止了大多数表征技术对其进行观察。通过用容易去除的液体电解质代替金属-绝缘体-金属存储结构中的顶部电极层,无论是具有高电阻接触的离子液体 (IL) 还是导电水性电解质,我们都可以在抑制或促进焦耳加热的条件下探测 TiO 薄膜中场驱动氧空位再分布。氧同位素交换实验表明,TiO 和 IL 之间的氧离子交换在室温下很容易进行。氧损失显著增加了 TiO 薄膜的电导率;然而,单独进行 IL 门控后并未观察到丝的形成。用更具导电性的水性电解质接触和偏置代替 IL 确实会产生电形成的导电丝,这与焦耳加热增强薄膜中特定位置的空位浓度和迁移率的要求一致。