Suppr超能文献

莫特VO₂电阻开关过程中导电细丝的表征

characterization of conductive filaments during resistive switching in Mott VO.

作者信息

Cheng Shaobo, Lee Min-Han, Li Xing, Fratino Lorenzo, Tesler Federico, Han Myung-Geun, Del Valle Javier, Dynes R C, Rozenberg Marcelo J, Schuller Ivan K, Zhu Yimei

机构信息

Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY 11973.

Materials Science and Engineering Program, University of California San Diego, La Jolla, CA 92093.

出版信息

Proc Natl Acad Sci U S A. 2021 Mar 2;118(9). doi: 10.1073/pnas.2013676118.

Abstract

Vanadium dioxide (VO) has attracted much attention owing to its metal-insulator transition near room temperature and the ability to induce volatile resistive switching, a key feature for developing novel hardware for neuromorphic computing. Despite this interest, the mechanisms for nonvolatile switching functioning as synapse in this oxide remain not understood. In this work, we use in situ transmission electron microscopy, electrical transport measurements, and numerical simulations on Au/VO/Ge vertical devices to study the electroforming process. We have observed the formation of VO conductive filaments with a pronounced metal-insulator transition and that vacancy diffusion can erase the filament, allowing for the system to "forget." Thus, both volatile and nonvolatile switching can be achieved in VO, useful to emulate neuronal and synaptic behaviors, respectively. Our systematic study of the filament provides a more comprehensive understanding of resistive switching, key in the development of resistive switching-based neuromorphic computing.

摘要

二氧化钒(VO₂)因其在室温附近的金属-绝缘体转变以及诱导挥发性电阻开关的能力而备受关注,这是开发用于神经形态计算的新型硬件的关键特性。尽管有此兴趣,但这种氧化物中作为突触的非易失性开关机制仍不为人所知。在这项工作中,我们对Au/VO₂/Ge垂直器件进行原位透射电子显微镜、电输运测量和数值模拟,以研究电形成过程。我们观察到具有明显金属-绝缘体转变的VO₂导电细丝的形成,并且空位扩散可以消除细丝,使系统能够“遗忘”。因此,VO₂中可以实现挥发性和非易失性开关,分别用于模拟神经元和突触行为。我们对细丝的系统研究为电阻开关提供了更全面的理解,这是基于电阻开关的神经形态计算发展的关键。

相似文献

1
characterization of conductive filaments during resistive switching in Mott VO.
Proc Natl Acad Sci U S A. 2021 Mar 2;118(9). doi: 10.1073/pnas.2013676118.
2
Inherent stochasticity during insulator-metal transition in VO.
Proc Natl Acad Sci U S A. 2021 Sep 14;118(37). doi: 10.1073/pnas.2105895118.
3
Reconfigurable Resistive Switching in VO/LaSrMnO/AlO (0001) Memristive Devices for Neuromorphic Computing.
ACS Appl Mater Interfaces. 2024 Apr 17;16(15):19103-19111. doi: 10.1021/acsami.3c19032. Epub 2024 Apr 5.
4
Spatiotemporal characterization of the field-induced insulator-to-metal transition.
Science. 2021 Aug 20;373(6557):907-911. doi: 10.1126/science.abd9088. Epub 2021 Jul 22.
5
Vacancy-Engineered Nickel Ferrite Forming-Free Low-Voltage Resistive Switches for Neuromorphic Circuits.
ACS Appl Mater Interfaces. 2024 Apr 17;16(15):19225-19234. doi: 10.1021/acsami.4c01501. Epub 2024 Apr 5.
7
VO Phase Mixture of Reduced Single Crystalline VO: VO Resistive Switching.
Materials (Basel). 2022 Oct 31;15(21):7652. doi: 10.3390/ma15217652.
8
Nanoscale Imaging and Control of Volatile and Non-Volatile Resistive Switching in VO.
Small. 2020 Dec;16(50):e2005439. doi: 10.1002/smll.202005439. Epub 2020 Nov 23.
9
Realization of Biomimetic Synaptic Functions in a One-Cell Organic Resistive Switching Device Using the Diffusive Parameter of Conductive Filaments.
ACS Appl Mater Interfaces. 2020 Nov 18;12(46):51719-51728. doi: 10.1021/acsami.0c15519. Epub 2020 Nov 5.
10
Picosecond Femtojoule Resistive Switching in Nanoscale VO Memristors.
ACS Nano. 2024 Aug 20;18(33):21966-21974. doi: 10.1021/acsnano.4c03840. Epub 2024 Aug 8.

引用本文的文献

1
Purely electronic insulator-metal transition in rutile VO.
Nat Commun. 2025 Jul 1;16(1):5444. doi: 10.1038/s41467-025-60243-0.
2
Infrared Nanoimaging of Hydrogenated Perovskite Nickelate Memristive Devices.
ACS Nano. 2024 Jan 23;18(3):2105-2116. doi: 10.1021/acsnano.3c09281. Epub 2024 Jan 10.
3
Facile Fabrication of High-Performance Thermochromic VO-Based Films on Si for Application in Phase-Change Devices.
Chem Mater. 2023 May 30;35(11):4435-4448. doi: 10.1021/acs.chemmater.3c00613. eCollection 2023 Jun 13.
5
Transverse barrier formation by electrical triggering of a metal-to-insulator transition.
Nat Commun. 2021 Sep 17;12(1):5499. doi: 10.1038/s41467-021-25802-1.
6
Inherent stochasticity during insulator-metal transition in VO.
Proc Natl Acad Sci U S A. 2021 Sep 14;118(37). doi: 10.1073/pnas.2105895118.

本文引用的文献

1
Non-thermal resistive switching in Mott insulator nanowires.
Nat Commun. 2020 Jun 12;11(1):2985. doi: 10.1038/s41467-020-16752-1.
2
Understanding memristive switching via in situ characterization and device modeling.
Nat Commun. 2019 Aug 1;10(1):3453. doi: 10.1038/s41467-019-11411-6.
3
Subthreshold firing in Mott nanodevices.
Nature. 2019 May;569(7756):388-392. doi: 10.1038/s41586-019-1159-6. Epub 2019 May 1.
4
Biological plausibility and stochasticity in scalable VO active memristor neurons.
Nat Commun. 2018 Nov 7;9(1):4661. doi: 10.1038/s41467-018-07052-w.
5
Ultrafast disordering of vanadium dimers in photoexcited VO.
Science. 2018 Nov 2;362(6414):572-576. doi: 10.1126/science.aau3873.
6
Interface reconstruction with emerging charge ordering in hexagonal manganite.
Sci Adv. 2018 May 18;4(5):eaar4298. doi: 10.1126/sciadv.aar4298. eCollection 2018 May.
9
Sequential electronic and structural transitions in VO2 observed using X-ray absorption spectromicroscopy.
Adv Mater. 2014 Nov 26;26(44):7505-9. doi: 10.1002/adma.201402404. Epub 2014 Oct 15.
10
Local temperature redistribution and structural transition during joule-heating-driven conductance switching in VO2.
Adv Mater. 2013 Nov 13;25(42):6128-32. doi: 10.1002/adma.201302046. Epub 2013 Jul 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验