Cheng Shaobo, Lee Min-Han, Li Xing, Fratino Lorenzo, Tesler Federico, Han Myung-Geun, Del Valle Javier, Dynes R C, Rozenberg Marcelo J, Schuller Ivan K, Zhu Yimei
Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY 11973.
Materials Science and Engineering Program, University of California San Diego, La Jolla, CA 92093.
Proc Natl Acad Sci U S A. 2021 Mar 2;118(9). doi: 10.1073/pnas.2013676118.
Vanadium dioxide (VO) has attracted much attention owing to its metal-insulator transition near room temperature and the ability to induce volatile resistive switching, a key feature for developing novel hardware for neuromorphic computing. Despite this interest, the mechanisms for nonvolatile switching functioning as synapse in this oxide remain not understood. In this work, we use in situ transmission electron microscopy, electrical transport measurements, and numerical simulations on Au/VO/Ge vertical devices to study the electroforming process. We have observed the formation of VO conductive filaments with a pronounced metal-insulator transition and that vacancy diffusion can erase the filament, allowing for the system to "forget." Thus, both volatile and nonvolatile switching can be achieved in VO, useful to emulate neuronal and synaptic behaviors, respectively. Our systematic study of the filament provides a more comprehensive understanding of resistive switching, key in the development of resistive switching-based neuromorphic computing.
二氧化钒(VO₂)因其在室温附近的金属-绝缘体转变以及诱导挥发性电阻开关的能力而备受关注,这是开发用于神经形态计算的新型硬件的关键特性。尽管有此兴趣,但这种氧化物中作为突触的非易失性开关机制仍不为人所知。在这项工作中,我们对Au/VO₂/Ge垂直器件进行原位透射电子显微镜、电输运测量和数值模拟,以研究电形成过程。我们观察到具有明显金属-绝缘体转变的VO₂导电细丝的形成,并且空位扩散可以消除细丝,使系统能够“遗忘”。因此,VO₂中可以实现挥发性和非易失性开关,分别用于模拟神经元和突触行为。我们对细丝的系统研究为电阻开关提供了更全面的理解,这是基于电阻开关的神经形态计算发展的关键。