a Unité de Recherche en Biologie des Microorganismes , Laboratoire d'Immunologie et de Microbiologie, NARILIS, Université de Namur , Namur , Belgium.
b Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdISNA) and Depto. Microbiología y Parasitología , Universidad de Navarra, Edificio de Investigación , Pamplona , Spain.
Crit Rev Microbiol. 2018 Mar;44(2):182-211. doi: 10.1080/1040841X.2017.1332002. Epub 2017 Jun 12.
The brucellae are facultative intracellular pathogens causing brucellosis, an important zoonosis. Here, we review the nutritional, genetic, proteomic and transcriptomic studies on Brucella carbon uptake and central metabolism, information that is needed for a better understanding of Brucella virulence. There is no uniform picture across species but the studies suggest primary and/or secondary transporters for unknown carbohydrates, lactate, glycerol phosphate, erythritol, xylose, ribose, glucose and glucose/galactose, and routes for their incorporation to central metabolism, including an erythritol pathway feeding the pentose phosphate cycle. Significantly, all brucellae lack phosphoenolpyruvate synthase and phosphofructokinase genes, which confirms previous evidence on glycolysis absence, but carry all Entner-Doudoroff (ED) pathway and Krebs cycle (and glyoxylate pathway) genes. However, glucose catabolism proceeds through the pentose phosphate cycle in the classical species, and the ED pathway operates in some rodent-associated brucellae, suggesting an ancestral character for this pathway in this group. Gluconeogenesis is functional but does not rely exclusively on classical fructose bisphosphatases. Evidence obtained using infection models is fragmentary but suggests the combined or sequential use of hexoses/pentoses, amino acids and gluconeogenic substrates. We also discuss the role of the phosphotransferase system, stringent reponse, quorum sensing, BvrR/S and sRNAs in metabolism control, an essential aspect of the life style of facultative intracellular parasites.
布鲁氏菌是兼性细胞内病原体,可引起布鲁氏菌病,这是一种重要的人畜共患病。在这里,我们回顾了关于布鲁氏菌碳吸收和中心代谢的营养、遗传、蛋白质组学和转录组学研究,这些信息对于更好地了解布鲁氏菌的毒力是必要的。不同物种之间没有统一的模式,但研究表明存在用于未知碳水化合物、乳酸盐、甘油磷酸、赤藓糖醇、木糖、核糖、葡萄糖和葡萄糖/半乳糖的主要和/或次要转运体,以及将其纳入中心代谢的途径,包括为戊糖磷酸循环提供营养的赤藓糖醇途径。重要的是,所有布鲁氏菌都缺乏磷酸烯醇丙酮酸合酶和磷酸果糖激酶基因,这证实了先前关于糖酵解不存在的证据,但携带所有 Entner-Doudoroff(ED)途径和克雷布斯循环(和乙醛酸途径)基因。然而,在经典物种中,葡萄糖代谢通过戊糖磷酸循环进行,而 ED 途径在一些与啮齿动物相关的布鲁氏菌中运行,这表明该途径在该组中具有祖先特征。糖异生是功能性的,但不依赖于经典的果糖二磷酸酶。使用感染模型获得的证据是零碎的,但表明六碳糖/五碳糖、氨基酸和糖异生底物的联合或顺序使用。我们还讨论了磷酸转移酶系统、严格反应、群体感应、BvrR/S 和 sRNAs 在代谢控制中的作用,这是兼性细胞内寄生虫生活方式的一个重要方面。