Suppr超能文献

从替代监测器记录的原始加速度生成ActiGraph计数。

Generating ActiGraph Counts from Raw Acceleration Recorded by an Alternative Monitor.

作者信息

Brønd Jan Christian, Andersen Lars Bo, Arvidsson Daniel

机构信息

1Center for Research in Childhood Health/Unit for Exercise Epidemiology, Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, DENMARK; 2Faculty of Teacher Education and Sport, Western Norway University of Applied Sciences, Campus Sogndal, NORWAY; 3Norwegian School of Sport Sciences, Department of Sports Medicine, Oslo, NORWAY; 4Unit for Clinical Physiology, Department of Translational Medicine, Lund University, Malmö, SWEDEN; and 5Center for Health and Performance, Department of Food and Nutrition, and Sport Science, University of Gothenburg, Gothenburg, SWEDEN.

出版信息

Med Sci Sports Exerc. 2017 Nov;49(11):2351-2360. doi: 10.1249/MSS.0000000000001344.

Abstract

PURPOSE

This study aimed to implement an aggregation method in Matlab for generating ActiGraph counts from raw acceleration recorded with an alternative accelerometer device and to investigate the validity of the method.

METHODS

The aggregation method, including the frequency band-pass filter, was implemented and optimized based on standardized sinusoidal acceleration signals generated in Matlab and processed in the ActiLife software. Evaluating the validity of the aggregation method was approached using a mechanical setup and with a 24-h free-living recording using a convenient sample of nine subjects. Counts generated with the aggregation method applied to Axivity AX3 raw acceleration data were compared with counts generated with ActiLife from ActiGraph GT3X+ data.

RESULTS

An optimal band-pass filter was fitted resulting in a root-mean-square error of 25.7 counts per 10 s and mean absolute error of 15.0 counts per second across the full frequency range. The mechanical evaluation of the proposed aggregation method resulted in an absolute mean ± SD difference of -0.11 ± 0.97 counts per 10 s across all rotational frequencies compared with the original ActiGraph method. Applying the aggregation method to the 24-h free-living recordings resulted in an epoch level bias ranging from -16.2 to 0.9 counts per 10 s, a relative difference in the averaged physical activity (counts per minute) ranging from -0.5% to 4.7% with a group mean ± SD of 2.2% ± 1.7%, and a Cohen's kappa of 0.945, indicating almost a perfect agreement in the intensity classification.

CONCLUSION

The proposed band-pass filter and aggregation method is highly valid for generating ActiGraph counts from raw acceleration data recorded with alternative devices. It would facilitate comparability between studies using different devices collecting raw acceleration data.

摘要

目的

本研究旨在在Matlab中实现一种聚合方法,以便从使用替代加速度计设备记录的原始加速度数据生成ActiGraph计数,并研究该方法的有效性。

方法

基于在Matlab中生成并在ActiLife软件中处理的标准化正弦加速度信号,实现并优化了包括频带通滤波器在内的聚合方法。使用机械装置并对9名受试者的便利样本进行24小时自由生活记录,以评估聚合方法的有效性。将应用于Axivity AX3原始加速度数据的聚合方法生成的计数与ActiLife从ActiGraph GT3X+数据生成的计数进行比较。

结果

拟合了一个最优带通滤波器,在整个频率范围内,每10秒的均方根误差为25.7计数,每秒的平均绝对误差为15.0计数。与原始ActiGraph方法相比,对所提出的聚合方法进行机械评估,在所有旋转频率下,每10秒的绝对平均±标准差差异为-0.11±0.97计数。将聚合方法应用于24小时自由生活记录,导致每10秒的时段水平偏差在-16.2至0.9计数之间,平均身体活动(每分钟计数)的相对差异在-0.5%至4.7%之间,组平均±标准差为2.2%±1.7%,Cohen's kappa为0.945,表明强度分类几乎完全一致。

结论

所提出的带通滤波器和聚合方法对于从使用替代设备记录的原始加速度数据生成ActiGraph计数非常有效。它将有助于使用不同设备收集原始加速度数据的研究之间的可比性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验