Suppr超能文献

用于量化慢性下背痛患者和健康对照者的 ActiGraph™ 身体活动指标的算法验证。

Algorithm Validation for Quantifying ActiGraph™ Physical Activity Metrics in Individuals with Chronic Low Back Pain and Healthy Controls.

机构信息

Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA.

Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA.

出版信息

Sensors (Basel). 2024 Aug 17;24(16):5323. doi: 10.3390/s24165323.

Abstract

Assessing physical activity is important in the treatment of chronic conditions, including chronic low back pain (cLBP). ActiGraph™, a widely used physical activity monitor, collects raw acceleration data, and processes these data through proprietary algorithms to produce physical activity measures. The purpose of this study was to replicate ActiGraph™ algorithms in MATLAB and test the validity of this method with both healthy controls and participants with cLBP. MATLAB code was developed to replicate ActiGraph™'s activity counts and step counts algorithms, to sum the activity counts into counts per minute (CPM), and categorize each minute into activity intensity cut points. A free-living validation was performed where 24 individuals, 12 cLBP and 12 healthy, wore an ActiGraph™ GT9X on their non-dominant hip for up to seven days. The raw acceleration data were processed in both ActiLife™ (v6), ActiGraph™'s data analysis software platform, and through MATLAB (2022a). Percent errors between methods for all 24 participants, as well as separated by cLBP and healthy, were all less than 2%. ActiGraph™ algorithms were replicated and validated for both populations, based on minimal error differences between ActiLife™ and MATLAB, allowing researchers to analyze data from any accelerometer in a manner comparable to ActiLife™.

摘要

评估身体活动对于治疗慢性疾病(包括慢性下腰痛,cLBP)非常重要。ActiGraph™是一种广泛使用的身体活动监测器,可收集原始加速度数据,并通过专有算法处理这些数据以生成身体活动测量值。本研究的目的是在 MATLAB 中复制 ActiGraph™算法,并使用健康对照组和 cLBP 参与者测试该方法的有效性。开发了 MATLAB 代码来复制 ActiGraph™的活动计数和步数算法,将活动计数汇总为每分钟计数(CPM),并将每分钟分类为活动强度切点。进行了一项自由生活验证,其中 24 名参与者,12 名患有 cLBP,12 名健康,在非优势髋部佩戴 ActiGraph™ GT9X 长达七天。原始加速度数据在 ActiLife™(v6),ActiGraph™的数据分析软件平台以及 MATLAB(2022a)中进行处理。所有 24 名参与者以及按 cLBP 和健康分组的方法之间的百分比误差均小于 2%。根据 ActiLife™和 MATLAB 之间最小的误差差异,对两种人群都复制和验证了 ActiGraph™算法,这使研究人员能够以类似于 ActiLife™的方式分析任何加速度计的数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38a6/11360344/e41c20401519/sensors-24-05323-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验