Stefan-Meyer-Institut für Subatomare Physik, Österreichische Akademie der Wissenschaften, Boltzmanngasse 3, Wien 1090, Austria.
Experimental Physics Department, CERN, Genève 23, CH-1211, Switzerland.
Nat Commun. 2017 Jun 12;8:15749. doi: 10.1038/ncomms15749.
Antihydrogen, the lightest atom consisting purely of antimatter, is an ideal laboratory to study the CPT symmetry by comparison with hydrogen. With respect to absolute precision, transitions within the ground-state hyperfine structure (GS-HFS) are most appealing by virtue of their small energy separation. ASACUSA proposed employing a beam of cold antihydrogen atoms in a Rabi-type experiment, to determine the GS-HFS in a field-free region. Here we present a measurement of the zero-field hydrogen GS-HFS using the spectroscopy apparatus of ASACUSA's antihydrogen experiment. The measured value of ν=1,420,405,748.4(3.4) (1.6) Hz with a relative precision of 2.7 × 10 constitutes the most precise determination of this quantity in a beam and verifies the developed spectroscopy methods for the antihydrogen HFS experiment to the p.p.b. level. Together with the recently presented observation of antihydrogen atoms 2.7 m downstream of the production region, the prerequisites for a measurement with antihydrogen are now available within the ASACUSA collaboration.
反氢,由纯反物质组成的最轻原子,是通过与氢进行比较来研究 CPT 对称性的理想实验室。就绝对精度而言,由于其能量分离较小,基态超精细结构(GS-HFS)内的跃迁是最吸引人的。ASACUSA 提议在 Rabi 型实验中使用一束冷反氢原子,以在无场区域确定 GS-HFS。在这里,我们使用 ASACUSA 反氢实验的光谱仪,对无场氢 GS-HFS 进行了测量。测量值 ν=1,420,405,748.4(3.4) (1.6) Hz,相对精度为 2.7×10,这是在束中对该量的最精确测定,并验证了反氢 HFS 实验的光谱方法达到了 p.p.b. 级别的精度。与最近报道的在生产区域下游 2.7 m 处观察到的反氢原子一起,ASACUSA 合作现在已经具备了进行测量的前提条件。