Molodecky Natalie A, Blake Isobel M, O'Reilly Kathleen M, Wadood Mufti Zubair, Safdar Rana M, Wesolowski Amy, Buckee Caroline O, Bandyopadhyay Ananda S, Okayasu Hiromasa, Grassly Nicholas C
Department of Infectious Disease Epidemiology, St Mary's Campus, Imperial College London, London, United Kingdom.
World Health Organization (WHO), Islamabad, Pakistan.
PLoS Med. 2017 Jun 12;14(6):e1002323. doi: 10.1371/journal.pmed.1002323. eCollection 2017 Jun.
Pakistan currently provides a substantial challenge to global polio eradication, having contributed to 73% of reported poliomyelitis in 2015 and 54% in 2016. A better understanding of the risk factors and movement patterns that contribute to poliovirus transmission across Pakistan would support evidence-based planning for mass vaccination campaigns.
We fit mixed-effects logistic regression models to routine surveillance data recording the presence of poliomyelitis associated with wild-type 1 poliovirus in districts of Pakistan over 6-month intervals between 2010 to 2016. To accurately capture the force of infection (FOI) between districts, we compared 6 models of population movement (adjacency, gravity, radiation, radiation based on population density, radiation based on travel times, and mobile-phone based). We used the best-fitting model (based on the Akaike Information Criterion [AIC]) to produce 6-month forecasts of poliomyelitis incidence. The odds of observing poliomyelitis decreased with improved routine or supplementary (campaign) immunisation coverage (multivariable odds ratio [OR] = 0.75, 95% confidence interval [CI] 0.67-0.84; and OR = 0.75, 95% CI 0.66-0.85, respectively, for each 10% increase in coverage) and increased with a higher rate of reporting non-polio acute flaccid paralysis (AFP) (OR = 1.13, 95% CI 1.02-1.26 for a 1-unit increase in non-polio AFP per 100,000 persons aged <15 years). Estimated movement of poliovirus-infected individuals was associated with the incidence of poliomyelitis, with the radiation model of movement providing the best fit to the data. Six-month forecasts of poliomyelitis incidence by district for 2013-2016 showed good predictive ability (area under the curve range: 0.76-0.98). However, although the best-fitting movement model (radiation) was a significant determinant of poliomyelitis incidence, it did not improve the predictive ability of the multivariable model. Overall, in Pakistan the risk of polio cases was predicted to reduce between July-December 2016 and January-June 2017. The accuracy of the model may be limited by the small number of AFP cases in some districts.
Spatiotemporal variation in immunization performance and population movement patterns are important determinants of historical poliomyelitis incidence in Pakistan; however, movement dynamics were less influential in predicting future cases, at a time when the polio map is shrinking. Results from the regression models we present are being used to help plan vaccination campaigns and transit vaccination strategies in Pakistan.
目前,巴基斯坦对全球根除脊髓灰质炎构成了重大挑战,2015年报告的脊髓灰质炎病例中有73%来自该国,2016年这一比例为54%。更好地了解导致脊髓灰质炎病毒在巴基斯坦传播的风险因素和人口流动模式,将有助于为大规模疫苗接种运动进行循证规划。
我们将混合效应逻辑回归模型应用于常规监测数据,这些数据记录了2010年至2016年期间巴基斯坦各地区每6个月出现的与野生型1型脊髓灰质炎病毒相关的脊髓灰质炎病例。为了准确捕捉各地区之间的感染强度(FOI),我们比较了6种人口流动模型(邻接模型、引力模型、辐射模型、基于人口密度的辐射模型、基于出行时间的辐射模型和基于手机的模型)。我们使用拟合效果最佳的模型(基于赤池信息准则[AIC])对脊髓灰质炎发病率进行6个月的预测。随着常规或补充(强化)免疫接种覆盖率的提高,观察到脊髓灰质炎病例的几率降低(每提高10%的覆盖率,多变量优势比[OR]分别为0.75,95%置信区间[CI]0.67 - 0.84;以及OR = 0.75,95% CI 0.66 - 0.85),而随着非脊髓灰质炎急性弛缓性麻痹(AFP)报告率的提高,几率增加(每10万名<15岁人群中,非脊髓灰质炎AFP每增加1个单位,OR = 1.13,95% CI 1.02 - 1.26)。脊髓灰质炎感染个体的估计流动与脊髓灰质炎发病率相关,其中辐射流动模型与数据拟合效果最佳。2013 - 2016年各地区脊髓灰质炎发病率的6个月预测显示出良好的预测能力(曲线下面积范围:0.76 - 0.98)。然而,尽管拟合效果最佳的流动模型(辐射模型)是脊髓灰质炎发病率的一个重要决定因素,但它并没有提高多变量模型的预测能力。总体而言,预计2016年7月至12月和2017年1月至6月期间巴基斯坦脊髓灰质炎病例风险会降低。该模型的准确性可能受到一些地区AFP病例数量较少的限制。结论:免疫接种效果和人口流动模式的时空变化是巴基斯坦历史上脊髓灰质炎发病率的重要决定因素;然而,在脊髓灰质炎流行范围正在缩小的时期,流动动态对预测未来病例的影响较小。我们提出的回归模型结果正被用于帮助规划巴基斯坦的疫苗接种运动和过境疫苗接种策略。