Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Rd, CB3 0FS Cambridge, UK.
Nanoscale. 2017 Jun 22;9(24):8458-8469. doi: 10.1039/c7nr02142a.
Improving the interface between copper and carbon nanotubes (CNTs) offers a straightforward strategy for the effective manufacturing and utilisation of Cu-CNT composite material that could be used in various industries including microelectronics, aerospace and transportation. Motivated by a combination of structural and electrical measurements on Cu-M-CNT bimetal systems (M = Ni, Cr) we show, using first principles calculations, that the conductance of this composite can exceed that of a pure Cu-CNT system and that the current density can even reach 10 A cm. The results show that the proper choice of alloying element (M) and type of contact facilitate the fabrication of ultra-conductive Cu-M-CNT systems by creating a favourable interface geometry, increasing the interface electronic density of states and reducing the contact resistance. In particular, a small concentration of Ni between the Cu matrix and the CNT using either an "end contact" and or a "dot contact" can significantly improve the electrical performance of the composite. Furthermore the predicted conductance of Ni-doped Cu-CNT "carpets" exceeds that of an undoped system by ∼200%. Cr is shown to improve CNT integration and composite conductance over a wide temperature range while Al, at low voltages, can enhance the conductance beyond that of Cr.
改善铜和碳纳米管(CNT)之间的界面为有效制造和利用 Cu-CNT 复合材料提供了一种直接的策略,这种复合材料可用于包括微电子、航空航天和运输等各个行业。受 Cu-M-CNT 双金属系统(M = Ni、Cr)结构和电学测量的启发,我们使用第一性原理计算表明,这种复合材料的电导率可以超过纯 Cu-CNT 系统,电流密度甚至可以达到 10 A cm。结果表明,通过创建有利的界面几何形状、增加界面电子态密度和降低接触电阻,适当选择合金元素(M)和接触类型可以促进超导电 Cu-M-CNT 系统的制造。特别是,在 Cu 基体和 CNT 之间使用“端接触”和/或“点接触”的少量 Ni 可以显著改善复合材料的电性能。此外,预测的掺杂 Ni 的 Cu-CNT“地毯”的电导率超过未掺杂系统约 200%。Cr 被证明可以在很宽的温度范围内提高 CNT 的集成度和复合材料的电导率,而 Al 在低电压下可以使电导率超过 Cr。