Suppr超能文献

碳纳米管片上互连的最新进展与挑战

Recent Progress and Challenges Regarding Carbon Nanotube On-Chip Interconnects.

作者信息

Xu Baohui, Chen Rongmei, Zhou Jiuren, Liang Jie

机构信息

School of Microelectronics, Shanghai University, Shanghai 201800, China.

Interuniversity Microelectronics Centre (IMEC), 3001 Leuven, Belgium.

出版信息

Micromachines (Basel). 2022 Jul 20;13(7):1148. doi: 10.3390/mi13071148.

Abstract

Along with deep scaling transistors and complex electronics information exchange networks, very-large-scale-integrated (VLSI) circuits require high performance and ultra-low power consumption. In order to meet the demand of data-abundant workloads and their energy efficiency, improving only the transistor performance would not be sufficient. Super high-speed microprocessors are useless if the capacity of the data lines is not increased accordingly. Meanwhile, traditional on-chip copper interconnects reach their physical limitation of resistivity and reliability and may no longer be able to keep pace with a processor's data throughput. As one of the potential alternatives, carbon nanotubes (CNTs) have attracted important attention to become the future emerging on-chip interconnects with possible explorations of new development directions. In this paper, we focus on the electrical, thermal, and process compatibility issues of current on-chip interconnects. We review the advantages, recent developments, and dilemmas of CNT-based interconnects from the perspective of different interconnect lengths and through-silicon-via (TSV) applications.

摘要

随着晶体管的深度缩放和复杂的电子信息交换网络的发展,超大规模集成电路(VLSI)需要高性能和超低功耗。为了满足数据丰富的工作负载及其能源效率的需求,仅提高晶体管性能是不够的。如果数据线的容量不相应增加,超高速微处理器将毫无用处。与此同时,传统的片上铜互连在电阻率和可靠性方面达到了物理极限,可能无法再跟上处理器的数据吞吐量。作为潜在的替代方案之一,碳纳米管(CNT)已引起重要关注,有望成为未来新兴的片上互连,并有可能探索新的发展方向。在本文中,我们关注当前片上互连的电气、热和工艺兼容性问题。我们从不同互连长度和硅通孔(TSV)应用的角度回顾了基于碳纳米管的互连的优势、最新进展和困境。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d29/9315640/e3e918533f38/micromachines-13-01148-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验