Yamamoto Yohei, Okada Daichi, Kushida Soh, Ngara Zakarias Seba, Oki Osamu
Faculty of Pure and Applied Sciences, University of Tsukuba; Tsukuba Research Center for Interdisciplinary Materials Science (TIMS), University of Tsukuba; Center for Integrated Research in Fundamental Science and Technology (CiRfSE), University of Tsukuba;
Faculty of Pure and Applied Sciences, University of Tsukuba.
J Vis Exp. 2017 Jun 2(124):55934. doi: 10.3791/55934.
This paper describes three methods of preparing fluorescent microspheres comprising π-conjugated or non-conjugated polymers: vapor diffusion, interface precipitation, and mini-emulsion. In all methods, well-defined, micrometer-sized spheres are obtained from a self-assembling process in solution. The vapor diffusion method can result in spheres with the highest sphericity and surface smoothness, yet the types of the polymers able to form these spheres are limited. On the other hand, in the mini-emulsion method, microspheres can be made from various types of polymers, even from highly crystalline polymers with coplanar, π-conjugated backbones. The photoluminescent (PL) properties from single isolated microspheres are unusual: the PL is confined inside the spheres, propagates at the circumference of the spheres via the total internal reflection at the polymer/air interface, and self-interferes to show sharp and periodic resonant PL lines. These resonating modes are so-called "whispering gallery modes" (WGMs). This work demonstrates how to measure WGM PL from single isolated spheres using the micro-photoluminescence (µ-PL) technique. In this technique, a focused laser beam irradiates a single microsphere, and the luminescence is detected by a spectrometer. A micromanipulation technique is then used to connect the microspheres one by one and to demonstrate the intersphere PL propagation and color conversion from coupled microspheres upon excitation at the perimeter of one sphere and detection of PL from the other microsphere. These techniques, µ-PL and micromanipulation, are useful for experiments on micro-optic application using polymer materials.
本文描述了三种制备包含π共轭或非共轭聚合物的荧光微球的方法:气相扩散法、界面沉淀法和微乳液法。在所有方法中,均通过溶液中的自组装过程获得尺寸明确的微米级球体。气相扩散法可得到球形度和表面光滑度最高的球体,但能够形成这些球体的聚合物类型有限。另一方面,在微乳液法中,微球可由各种类型的聚合物制成,甚至可由具有共面π共轭主链的高度结晶聚合物制成。单个分离微球的光致发光(PL)特性不同寻常:PL被限制在球体内,通过聚合物/空气界面的全内反射在球体圆周处传播,并发生自干涉以显示尖锐且周期性的共振PL线。这些共振模式即所谓的“回音壁模式”(WGMs)。这项工作展示了如何使用微光致发光(µ-PL)技术测量单个分离球体的WGM PL。在该技术中,聚焦激光束照射单个微球,然后用光谱仪检测发光。接着使用微操纵技术将微球逐个连接起来,并展示在一个球体周边激发并从另一个微球检测PL时,耦合微球之间的PL传播和颜色转换。这些技术,即µ-PL和微操纵技术,对于使用聚合物材料进行微光学应用实验很有用。