Suppr超能文献

右佐匹克隆诱导睡眠期间与可塑性相关的基因表达

Plasticity-Related Gene Expression During Eszopiclone-Induced Sleep.

作者信息

Gerashchenko Dmitry, Pasumarthi Ravi K, Kilduff Thomas S

机构信息

Harvard Medical School/VA Medical Center, West Roxbury, MA.

Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA.

出版信息

Sleep. 2017 Jul 1;40(7). doi: 10.1093/sleep/zsx098.

Abstract

STUDY OBJECTIVES

Experimental evidence suggests that restorative processes depend on synaptic plasticity changes in the brain during sleep. We used the expression of plasticity-related genes to assess synaptic plasticity changes during drug-induced sleep.

METHODS

We first characterized sleep induced by eszopiclone in mice during baseline conditions and during the recovery from sleep deprivation. We then compared the expression of 18 genes and two miRNAs critically involved in synaptic plasticity in these mice. Gene expression was assessed in the cerebral cortex and hippocampus by the TaqMan reverse transcription polymerase chain reaction and correlated with sleep parameters.

RESULTS

Eszopiclone reduced the latency to nonrapid eye movement (NREM) sleep and increased NREM sleep amounts. Eszopiclone had no effect on slow wave activity (SWA) during baseline conditions but reduced the SWA increase during recovery sleep (RS) after sleep deprivation. Gene expression analyses revealed three distinct patterns: (1) four genes had higher expression either in the cortex or hippocampus in the group of mice with increased amounts of wakefulness; (2) a large proportion of plasticity-related genes (7 out of 18 genes) had higher expression during RS in the cortex but not in the hippocampus; and (3) six genes and the two miRNAs showed no significant changes across conditions. Even at a relatively high dose (20 mg/kg), eszopiclone did not reduce the expression of plasticity-related genes during RS period in the cortex.

CONCLUSIONS

These results indicate that gene expression associated with synaptic plasticity occurs in the cortex in the presence of a hypnotic medication.

摘要

研究目的

实验证据表明,恢复过程依赖于睡眠期间大脑中的突触可塑性变化。我们使用可塑性相关基因的表达来评估药物诱导睡眠期间的突触可塑性变化。

方法

我们首先在基线条件下以及从睡眠剥夺恢复期间,对小鼠中右佐匹克隆诱导的睡眠进行了特征描述。然后,我们比较了这些小鼠中18个基因和两个微小RNA(miRNA)的表达,这些基因和miRNA在突触可塑性中起着关键作用。通过TaqMan逆转录聚合酶链反应评估大脑皮层和海马体中的基因表达,并将其与睡眠参数相关联。

结果

右佐匹克隆缩短了非快速眼动(NREM)睡眠的潜伏期,并增加了NREM睡眠量。右佐匹克隆在基线条件下对慢波活动(SWA)没有影响,但在睡眠剥夺后的恢复睡眠(RS)期间减少了SWA的增加。基因表达分析揭示了三种不同的模式:(1)在清醒时间增加的小鼠组中,四个基因在皮层或海马体中的表达较高;(2)很大一部分可塑性相关基因(18个基因中的7个)在皮层的RS期间表达较高,但在海马体中没有;(3)六个基因和两个miRNA在不同条件下没有显著变化。即使在相对较高的剂量(20mg/kg)下,右佐匹克隆在皮层的RS期间也没有降低可塑性相关基因的表达。

结论

这些结果表明,在存在催眠药物的情况下,与突触可塑性相关的基因表达发生在皮层中。

相似文献

1
Plasticity-Related Gene Expression During Eszopiclone-Induced Sleep.
Sleep. 2017 Jul 1;40(7). doi: 10.1093/sleep/zsx098.
2
The impact of age on the hypnotic effects of eszopiclone and zolpidem in the guinea pig.
Psychopharmacology (Berl). 2009 Jul;205(1):107-17. doi: 10.1007/s00213-009-1520-9. Epub 2009 Apr 3.
4
Gene expression in the rat cerebral cortex: comparison of recovery sleep and hypnotic-induced sleep.
Neuroscience. 2006 Aug 11;141(1):371-8. doi: 10.1016/j.neuroscience.2006.03.028. Epub 2006 May 11.
5
Valeriana wallichii root extract improves sleep quality and modulates brain monoamine level in rats.
Phytomedicine. 2012 Jul 15;19(10):924-9. doi: 10.1016/j.phymed.2012.05.005. Epub 2012 Jul 4.
8
9
Suppression of hippocampal plasticity-related gene expression by sleep deprivation in rats.
J Physiol. 2006 Sep 15;575(Pt 3):807-19. doi: 10.1113/jphysiol.2006.115287. Epub 2006 Jul 6.

引用本文的文献

1
Synergistic effects of combined hypnotic drugs on sleep in mice.
Front Pharmacol. 2025 Jul 23;16:1596813. doi: 10.3389/fphar.2025.1596813. eCollection 2025.
2
Effects of Approved Pharmacological Interventions for Insomnia on Mood Disorders: A Systematic Review.
Clin Neuropsychiatry. 2024 Oct;21(5):385-402. doi: 10.36131/cnfioritieditore20240504.
3
The impact of sleep problems on cerebral aneurysm risk is mediated by hypertension: a mediated Mendelian randomization study.
Front Genet. 2024 Oct 11;15:1434189. doi: 10.3389/fgene.2024.1434189. eCollection 2024.
6
Altered hippocampal transcriptome dynamics following sleep deprivation.
Mol Brain. 2021 Aug 12;14(1):125. doi: 10.1186/s13041-021-00835-1.

本文引用的文献

3
Insights into the regulation of protein abundance from proteomic and transcriptomic analyses.
Nat Rev Genet. 2012 Mar 13;13(4):227-32. doi: 10.1038/nrg3185.
4
Sleep and synaptic renormalization: a computational study.
J Neurophysiol. 2010 Dec;104(6):3476-93. doi: 10.1152/jn.00593.2010. Epub 2010 Oct 6.
5
Direct evidence for wake-related increases and sleep-related decreases in synaptic strength in rodent cortex.
J Neurosci. 2010 Jun 23;30(25):8671-5. doi: 10.1523/JNEUROSCI.1409-10.2010.
6
Sleep, noise and health: review.
Noise Health. 2010 Apr-Jun;12(47):64-9. doi: 10.4103/1463-1741.63205.
7
Slow wave homeostasis and synaptic plasticity.
J Clin Sleep Med. 2009 Apr 15;5(2 Suppl):S16-9.
8
The sedating antidepressant trazodone impairs sleep-dependent cortical plasticity.
PLoS One. 2009 Jul 1;4(7):e6078. doi: 10.1371/journal.pone.0006078.
9
Sleep-dependent gene expression in the hippocampus and prefrontal cortex following long-term potentiation.
Physiol Behav. 2009 Aug 4;98(1-2):44-52. doi: 10.1016/j.physbeh.2009.04.010. Epub 2009 Apr 20.
10
Widespread changes in synaptic markers as a function of sleep and wakefulness in Drosophila.
Science. 2009 Apr 3;324(5923):109-12. doi: 10.1126/science.1166673.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验