Suppr超能文献

蛋白激酶 A 在维持睡眠和丘脑皮质振荡中的作用的遗传证据。

Genetic evidence for a role for protein kinase A in the maintenance of sleep and thalamocortical oscillations.

机构信息

Department of Neurobiology, University of Chicago, Chicago, IL, USA.

出版信息

Sleep. 2010 Jan;33(1):19-28. doi: 10.1093/sleep/33.1.19.

Abstract

STUDY OBJECTIVES

Genetic manipulation of cAMP-dependent protein kinase A (PKA) in Drosophila has implicated an important role for PKA in sleeplwake state regulation. Here, we characterize the role of this signaling pathway in the regulation of sleep using electroencephalographic (EEG) and electromyographic (EMG) recordings in R(AB) transgenic mice that express a dominant negative form of the regulatory subunit of PKA in neurons within cortex and hippocampus. Previous studies have revealed that these mutant mice have reduced PKA activity that results in the impairment of hippocampus-dependent long-term memory and long-lasting forms of hippocampal synaptic plasticity.

DESIGN

PKA assays, in situ hybridization, immunoblots, and sleep studies were performed in R(AB) transgenic mice and wild-type control mice.

MEASUREMENTS AND RESULTS

We have found that R(AB) transgenic mice have reduced PKA activity within cortex and reduced Ser845 phosphorylation of the glutamate receptor subunit GluR1. R(AB) transgenic mice exhibit non-rapid eye movement (NREM) sleep fragmentation and increased amounts of rapid eye movement (REM) sleep relative to wild-type mice. Further, R(AB) transgenic mice have more delta power but less sigma power during NREM sleep relative to wild-type mice. After sleep deprivation, the amounts of NREM and REM sleep were comparable between wild-type and R(AB) transgenic mice. However, the homeostatic rebound of sigma power in R(AB) transgenic mice was reduced.

CONCLUSIONS

Alterations in cortical synaptic receptors, impairments in sleep continuity, and alterations in sleep oscillations in R(AB) mice imply that PKA is involved not only in synaptic plasticity and memory storage but also in the regulation of sleep/wake states.

摘要

研究目的

在果蝇中对环腺苷酸依赖性蛋白激酶 A(PKA)的基因操作表明 PKA 在睡眠-觉醒状态调节中起重要作用。在这里,我们使用在大脑皮层和海马神经元中表达 PKA 调节亚基显性负形式的 R(AB)转基因小鼠的脑电图(EEG)和肌电图(EMG)记录来描述该信号通路在睡眠调节中的作用。先前的研究表明,这些突变小鼠的 PKA 活性降低,导致海马依赖性长时记忆和海马长时程突触可塑性的损害。

设计

在 R(AB)转基因小鼠和野生型对照小鼠中进行 PKA 测定、原位杂交、免疫印迹和睡眠研究。

测量和结果

我们发现 R(AB)转基因小鼠大脑皮层中的 PKA 活性降低,谷氨酸受体亚基 GluR1 的 Ser845 磷酸化减少。R(AB)转基因小鼠表现出非快速眼动(NREM)睡眠片段化,并比野生型小鼠表现出更多的快速眼动(REM)睡眠。此外,R(AB)转基因小鼠在 NREM 睡眠期间具有更多的 delta 功率但更少的 sigma 功率。在睡眠剥夺后,野生型和 R(AB)转基因小鼠的 NREM 和 REM 睡眠时间相当。然而,R(AB)转基因小鼠中 sigma 功率的稳态反弹减少。

结论

R(AB)小鼠大脑皮层突触受体的改变、睡眠连续性的损害以及睡眠振荡的改变表明 PKA 不仅参与突触可塑性和记忆存储,还参与睡眠/觉醒状态的调节。

相似文献

6
Normal sleep homeostasis and lack of epilepsy phenotype in GABA A receptor alpha3 subunit-knockout mice.
Neuroscience. 2008 Jun 23;154(2):595-605. doi: 10.1016/j.neuroscience.2008.03.081. Epub 2008 Apr 11.
8
Sleep-wake characterization of double MT₁/MT₂ receptor knockout mice and comparison with MT₁ and MT₂ receptor knockout mice.
Behav Brain Res. 2013 Apr 15;243:231-8. doi: 10.1016/j.bbr.2013.01.008. Epub 2013 Jan 16.
10
Alterations in sleep, sleep spindle, and EEG power in mGluR5 knockout mice.
J Neurophysiol. 2020 Jan 1;123(1):22-33. doi: 10.1152/jn.00532.2019. Epub 2019 Nov 20.

引用本文的文献

1
PP2Acα regulates sleep amount and sleep homeostasis in mice.
Commun Biol. 2025 Jul 8;8(1):1018. doi: 10.1038/s42003-025-08437-6.
2
Phosphorylation of NLGN4X Regulates Spinogenesis and Synaptic Function.
eNeuro. 2025 Mar 14;12(3). doi: 10.1523/ENEURO.0278-23.2025. Print 2025 Mar.
3
Calcium/calmodulin-dependent protein kinase II α and β differentially regulate mammalian sleep.
Commun Biol. 2025 Jan 5;8(1):11. doi: 10.1038/s42003-024-07449-y.
4
Postsynaptic competition between calcineurin and PKA regulates mammalian sleep-wake cycles.
Nature. 2024 Dec;636(8042):412-421. doi: 10.1038/s41586-024-08132-2. Epub 2024 Nov 6.
6
A review of the current state of knowledge on sex differences in sleep and circadian phenotypes in rodents.
Neurobiol Sleep Circadian Rhythms. 2021 Jun 13;11:100068. doi: 10.1016/j.nbscr.2021.100068. eCollection 2021 Nov.
7
Post-stroke neuronal circuits and mental illnesses.
Int J Physiol Pathophysiol Pharmacol. 2019 Feb 15;11(1):1-11. eCollection 2019.
8
Tau Pathology of Alzheimer Disease: Possible Role of Sleep Deprivation.
Basic Clin Neurosci. 2018 Sep-Oct;9(5):307-316. doi: 10.32598/bcn.9.5.307. Epub 2018 Sep 1.
9
Quinpirole Increases Melatonin-Augmented Pentobarbital Sleep via Cortical ERK, p38 MAPK, and PKC in Mice.
Biomol Ther (Seoul). 2016 Mar 1;24(2):115-22. doi: 10.4062/biomolther.2015.097.
10
Early-onset sleep defects in Drosophila models of Huntington's disease reflect alterations of PKA/CREB signaling.
Hum Mol Genet. 2016 Mar 1;25(5):837-52. doi: 10.1093/hmg/ddv482. Epub 2015 Nov 24.

本文引用的文献

1
Activity level-dependent synapse-specific AMPA receptor trafficking regulates transmission kinetics.
J Neurosci. 2009 May 13;29(19):6320-35. doi: 10.1523/JNEUROSCI.4630-08.2009.
2
The influence of learning on sleep slow oscillations and associated spindles and ripples in humans and rats.
Eur J Neurosci. 2009 Mar;29(5):1071-81. doi: 10.1111/j.1460-9568.2009.06654.x. Epub 2009 Feb 24.
5
Molecular and electrophysiological evidence for net synaptic potentiation in wake and depression in sleep.
Nat Neurosci. 2008 Feb;11(2):200-8. doi: 10.1038/nn2035. Epub 2008 Jan 20.
6
Genome-wide association of sleep and circadian phenotypes.
BMC Med Genet. 2007 Sep 19;8 Suppl 1(Suppl 1):S9. doi: 10.1186/1471-2350-8-S1-S9.
7
Fully automated sleep deprivation in mice as a tool in sleep research.
J Neurosci Methods. 2007 Nov 30;166(2):229-35. doi: 10.1016/j.jneumeth.2007.07.007. Epub 2007 Jul 24.
8
Sleep circuitry and the hypnotic mechanism of GABAA drugs.
J Clin Sleep Med. 2006 Apr 15;2(2):S19-26.
10
Triggering sleep slow waves by transcranial magnetic stimulation.
Proc Natl Acad Sci U S A. 2007 May 15;104(20):8496-501. doi: 10.1073/pnas.0702495104. Epub 2007 May 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验