Suppr超能文献

小分子增强人多能干细胞衍生的皮质谷氨酸能神经元的分化

Enhanced derivation of human pluripotent stem cell-derived cortical glutamatergic neurons by a small molecule.

机构信息

Institute for Stem Cell and Neural Regeneration, School of Pharmacy, Nanjing Medical University, Nanjing, China.

Department of Student Affairs, Kangda college of Nanjing Medical University, Lianyungang, China.

出版信息

Sci Rep. 2017 Jun 12;7(1):3282. doi: 10.1038/s41598-017-03519-w.

Abstract

Human pluripotent stem cells (hPSCs) play important role in studying the function of human glutamatergic neurons and related disease pathogenesis. However, the current hPSC-derived cortical system produced a significant number of inhibitory GABAergic neurons that reduced the purity of excitatory neurons. In this study, we established a robust hPSC-derived cortical neurogenesis system by applying the SHH inhibitor cyclopamine. Cyclopamine specified the dorsal cortical fate in a dose-dependent manner and enhanced the generation of cortical glutamatergic neurons, expressing PAX6, TBR1, TBR2, CTIP2, SATB2, and vesicular glutamate transporters (vGLUT). In contrast, the ventral patterning was inhibited and the GABAergic neurons were significantly reduced to 12% with the treatment of cyclopamine. In addition, we applied our current method to generate trisomy 21 iPSC-derived glutamatergic neurons that showed a robust reduction of vesicular glutamate transporters in the glutamatergic neurons with trisomy 21, revealing the developmental deficits in cortical glutamatergic neurons. Our method enriched the generation of cortical glutamatergic neurons which may facilitate the study of human neurological diseases and cell therapy.

摘要

人多能干细胞(hPSCs)在研究人类谷氨酸能神经元的功能和相关疾病发病机制方面发挥着重要作用。然而,目前的 hPSC 衍生皮质系统产生了大量抑制性 GABA 能神经元,降低了兴奋性神经元的纯度。在这项研究中,我们通过应用 SHH 抑制剂环巴胺建立了一个强大的 hPSC 衍生皮质神经发生系统。环巴胺以剂量依赖的方式特异地指定皮质背侧命运,并增强了皮质谷氨酸能神经元的产生,表达 PAX6、TBR1、TBR2、CTIP2、SATB2 和囊泡谷氨酸转运体(vGLUT)。相比之下,腹侧模式受到抑制,用环巴胺处理后 GABA 能神经元显著减少到 12%。此外,我们应用当前的方法生成三体 21 iPSC 衍生的谷氨酸能神经元,显示三体 21 谷氨酸能神经元中囊泡谷氨酸转运体的显著减少,揭示了皮质谷氨酸能神经元的发育缺陷。我们的方法丰富了皮质谷氨酸能神经元的产生,这可能有助于研究人类神经疾病和细胞治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/039a/5468244/ad3071003491/41598_2017_3519_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验