Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada.
Department of Biology, Faculty of Science, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
Theranostics. 2024 Sep 23;14(16):6110-6137. doi: 10.7150/thno.97165. eCollection 2024.
Brain pericytes can acquire multipotency to produce multi-lineage cells following injury. However, pericytes are a heterogenous population and it remains unknown whether there are different potencies from different subsets of pericytes in response to injury. We used an ischemic stroke model combined with pericyte lineage tracing animal models to investigate brain pericyte heterogeneity under both naïve and brain injury conditions via single-cell RNA-sequencing and immunohistochemistry analysis. In addition, we developed an NG2 pericyte neural reprogramming culture model from both murine and humans to unveil the role of energy sensor, AMP-dependent kinase (AMPK), activity in modulating the reprogramming/differentiation process to convert pericytes to functional neurons by targeting a Ser 436 phosphorylation on CREB-binding protein (CBP), a histone acetyltransferase. We showed that two distinct pericyte subpopulations, marked by NG2 and Tbx18, had different potency following brain injury. NG2 pericytes expressed dominant neural reprogramming potential to produce newborn neurons, while Tbx18 pericytes displayed dominant multipotency to produce endothelial cells, fibroblasts, and microglia following ischemic stroke. In addition, we discovered that AMPK modulators facilitated pericyte-to-neuron conversion by modulating Ser436 phosphorylation status of CBP, to coordinate an acetylation shift between Sox2 and histone H2B, and to regulate Sox2 nuclear-cytoplasmic trafficking during the reprogramming/differentiation process. Finally, we showed that sequential treatment of compound C (CpdC) and metformin, AMPK inhibitor and activator respectively, robustly facilitated the conversion of human pericytes into functional neurons. We revealed that two distinct subtypes of pericytes possess different reprogramming potencies in response to physical and ischemic injuries. We also developed a genomic integration-free methodology to reprogram human pericytes into functional neurons by targeting NG2 pericytes.
脑周细胞在损伤后可获得多能性,从而产生多谱系细胞。然而,周细胞是一个异质性群体,目前尚不清楚在受到损伤时,不同周细胞亚群是否具有不同的潜能。我们使用缺血性中风模型结合周细胞谱系追踪动物模型,通过单细胞 RNA 测序和免疫组织化学分析,研究了在未受损伤和脑损伤两种情况下,脑周细胞的异质性。此外,我们从鼠和人建立了 NG2 周细胞神经重编程培养模型,以揭示能量传感器 AMP 依赖性激酶 (AMPK) 的活性在调节重编程/分化过程中的作用,该过程通过靶向 CREB 结合蛋白 (CBP) 上的丝氨酸 436 磷酸化和组蛋白乙酰转移酶,将周细胞转化为功能性神经元。我们发现,两种不同的周细胞亚群,由 NG2 和 Tbx18 标记,在脑损伤后具有不同的潜能。NG2 周细胞表达了主导的神经重编程潜能,可产生新生神经元,而 Tbx18 周细胞在缺血性中风后显示出主导的多能性,可产生内皮细胞、成纤维细胞和小胶质细胞。此外,我们发现,AMPK 调节剂通过调节 CBP 的 Ser436 磷酸化状态、协调 Sox2 和组蛋白 H2B 之间的乙酰化转移以及调节 Sox2 核质转运,来促进周细胞向神经元的转化,从而协调 Sox2 核质转运,以协调 Sox2 核质转运。在重编程/分化过程中。最后,我们发现,分别用 AMPK 抑制剂 CpdC 和激活剂二甲双胍对化合物 CpdC 和二甲双胍进行序贯处理,可显著促进人周细胞向功能性神经元的转化。我们揭示了两种不同亚型的周细胞在应对物理和缺血性损伤时具有不同的重编程潜能。我们还开发了一种基因组非整合的方法,通过靶向 NG2 周细胞,将人周细胞重编程为功能性神经元。