Suppr超能文献

使用可穿戴设备对帕金森病运动状态进行定量分析:从方法学考量到临床应用中的问题

Quantitative Analysis of Motor Status in Parkinson's Disease Using Wearable Devices: From Methodological Considerations to Problems in Clinical Applications.

作者信息

Suzuki Masahiko, Mitoma Hiroshi, Yoneyama Mitsuru

机构信息

Department of Neurology, Katsushika Medical Center, Jikei University School of Medicine, Tokyo, Japan.

Medical Education Promotion Center, Tokyo Medical University, Tokyo, Japan.

出版信息

Parkinsons Dis. 2017;2017:6139716. doi: 10.1155/2017/6139716. Epub 2017 May 18.

Abstract

Long-term and objective monitoring is necessary for full assessment of the condition of patients with Parkinson's disease (PD). Recent advances in biotechnology have seen the development of various types of wearable (body-worn) sensor systems. By using accelerometers and gyroscopes, these devices can quantify motor abnormalities, including decreased activity and gait disturbances, as well as nonmotor signs, such as sleep disturbances and autonomic dysfunctions in PD. This review discusses methodological problems inherent in wearable devices. Until now, analysis of the mean values of motion-induced signals on a particular day has been widely applied in the clinical management of PD patients. On the other hand, the reliability of these devices to detect various events, such as freezing of gait and dyskinesia, has been less than satisfactory. Quantification of disease-specific changes rather than nonspecific changes is necessary.

摘要

对帕金森病(PD)患者病情进行全面评估需要长期且客观的监测。生物技术的最新进展推动了各种可穿戴(穿戴在身上的)传感器系统的发展。通过使用加速度计和陀螺仪,这些设备可以量化运动异常,包括活动减少和步态障碍,以及非运动症状,如PD患者的睡眠障碍和自主神经功能障碍。本综述讨论了可穿戴设备固有的方法学问题。到目前为止,对特定日期运动诱发信号的平均值分析已广泛应用于PD患者的临床管理。另一方面,这些设备检测各种事件(如步态冻结和异动症)的可靠性一直不尽人意。有必要对疾病特异性变化而非非特异性变化进行量化。

相似文献

2
Wearable sensor-based objective assessment of motor symptoms in Parkinson's disease.
J Neural Transm (Vienna). 2016 Jan;123(1):57-64. doi: 10.1007/s00702-015-1439-8. Epub 2015 Aug 8.
3
Evaluation of Wearable Sensor Devices in Parkinson's Disease: A Review of Current Status and Future Prospects.
Parkinsons Dis. 2020 Sep 23;2020:4693019. doi: 10.1155/2020/4693019. eCollection 2020.
4
Free-living monitoring of Parkinson's disease: Lessons from the field.
Mov Disord. 2016 Sep;31(9):1293-313. doi: 10.1002/mds.26718. Epub 2016 Jul 25.
5
Monitoring Motor Symptoms During Activities of Daily Living in Individuals With Parkinson's Disease.
Front Neurol. 2018 Dec 12;9:1036. doi: 10.3389/fneur.2018.01036. eCollection 2018.
6
PERFORM: a system for monitoring, assessment and management of patients with Parkinson's disease.
Sensors (Basel). 2014 Nov 11;14(11):21329-57. doi: 10.3390/s141121329.
7
Wearable sensor use for assessing standing balance and walking stability in people with Parkinson's disease: a systematic review.
PLoS One. 2015 Apr 20;10(4):e0123705. doi: 10.1371/journal.pone.0123705. eCollection 2015.
8
Quantitative wearable sensors for objective assessment of Parkinson's disease.
Mov Disord. 2013 Oct;28(12):1628-37. doi: 10.1002/mds.25628. Epub 2013 Sep 12.
9
Multidimensional Circadian Monitoring by Wearable Biosensors in Parkinson's Disease.
Front Neurol. 2018 Mar 26;9:157. doi: 10.3389/fneur.2018.00157. eCollection 2018.
10
Emerging wearable technologies for multisystem monitoring and treatment of Parkinson's disease: a narrative review.
Front Netw Physiol. 2024 Feb 13;4:1354211. doi: 10.3389/fnetp.2024.1354211. eCollection 2024.

引用本文的文献

2
Validity of trunk acceleration measurement with a chest-worn monitor for assessment of physical activity intensity.
BMC Sports Sci Med Rehabil. 2022 Jun 10;14(1):104. doi: 10.1186/s13102-022-00492-4.
3
Consensus Paper: Ataxic Gait.
Cerebellum. 2023 Jun;22(3):394-430. doi: 10.1007/s12311-022-01373-9. Epub 2022 Apr 12.
5
Detection of Motor Dysfunction With Wearable Sensors in Patients With Idiopathic Rapid Eye Movement Disorder.
Front Bioeng Biotechnol. 2021 Apr 15;9:627481. doi: 10.3389/fbioe.2021.627481. eCollection 2021.
6
A Multi-Sensor Wearable System for the Quantitative Assessment of Parkinson's Disease.
Sensors (Basel). 2020 Oct 29;20(21):6146. doi: 10.3390/s20216146.
8
Calibration and validation of accelerometry to measure physical activity in adult clinical groups: A systematic review.
Prev Med Rep. 2019 Nov 6;16:101001. doi: 10.1016/j.pmedr.2019.101001. eCollection 2019 Dec.
9
Multi-Source Ensemble Learning for the Remote Prediction of Parkinson's Disease in the Presence of Source-Wise Missing Data.
IEEE Trans Biomed Eng. 2019 May;66(5):1402-1411. doi: 10.1109/TBME.2018.2873252. Epub 2018 Nov 5.
10
Optimizing Clinical Assessments in Parkinson's Disease Through the Use of Wearable Sensors and Data Driven Modeling.
Front Comput Neurosci. 2018 Sep 11;12:72. doi: 10.3389/fncom.2018.00072. eCollection 2018.

本文引用的文献

1
Unsupervised home monitoring of Parkinson's disease motor symptoms using body-worn accelerometers.
Parkinsonism Relat Disord. 2016 Dec;33:44-50. doi: 10.1016/j.parkreldis.2016.09.009. Epub 2016 Sep 9.
3
Free-living monitoring of Parkinson's disease: Lessons from the field.
Mov Disord. 2016 Sep;31(9):1293-313. doi: 10.1002/mds.26718. Epub 2016 Jul 25.
4
A Review of Emerging Analytical Techniques for Objective Physical Activity Measurement in Humans.
Sports Med. 2017 Mar;47(3):439-447. doi: 10.1007/s40279-016-0585-y.
6
Remote Physical Activity Monitoring in Neurological Disease: A Systematic Review.
PLoS One. 2016 Apr 28;11(4):e0154335. doi: 10.1371/journal.pone.0154335. eCollection 2016.
7
Complex Human Activity Recognition Using Smartphone and Wrist-Worn Motion Sensors.
Sensors (Basel). 2016 Mar 24;16(4):426. doi: 10.3390/s16040426.
9
Potential of APDM mobility lab for the monitoring of the progression of Parkinson's disease.
Expert Rev Med Devices. 2016 May;13(5):455-62. doi: 10.1586/17434440.2016.1153421.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验