Suppr超能文献

通过使用可穿戴传感器和数据驱动建模优化帕金森病的临床评估

Optimizing Clinical Assessments in Parkinson's Disease Through the Use of Wearable Sensors and Data Driven Modeling.

作者信息

Ramdhani Ritesh A, Khojandi Anahita, Shylo Oleg, Kopell Brian H

机构信息

Department of Neurology, School of Medicine, New York University, New York City, NY, United States.

Department of Industrial and Systems Engineering, University of Tennessee, Knoxville, TN, United States.

出版信息

Front Comput Neurosci. 2018 Sep 11;12:72. doi: 10.3389/fncom.2018.00072. eCollection 2018.

Abstract

The emergence of motion sensors as a tool that provides objective motor performance data on individuals afflicted with Parkinson's disease offers an opportunity to expand the horizon of clinical care for this neurodegenerative condition. Subjective clinical scales and patient based motor diaries have limited clinometric properties and produce a glimpse rather than continuous real time perspective into motor disability. Furthermore, the expansion of machine learn algorithms is yielding novel classification and probabilistic clinical models that stand to change existing treatment paradigms, refine the application of advance therapeutics, and may facilitate the development and testing of disease modifying agents for this disease. We review the use of inertial sensors and machine learning algorithms in Parkinson's disease.

摘要

运动传感器作为一种可为帕金森病患者提供客观运动表现数据的工具,其出现为拓展这种神经退行性疾病的临床护理视野提供了契机。主观临床量表和基于患者的运动日记的临床测量属性有限,只能提供对运动障碍的粗略而非连续实时的观察。此外,机器学习算法的扩展正在产生新的分类和概率临床模型,这些模型有望改变现有的治疗模式,优化先进疗法的应用,并可能促进针对该疾病的疾病修饰药物的开发和测试。我们综述了惯性传感器和机器学习算法在帕金森病中的应用。

相似文献

2
Upper limb motor pre-clinical assessment in Parkinson's disease using machine learning.使用机器学习进行帕金森病上肢运动的临床前评估。
Parkinsonism Relat Disord. 2019 Jun;63:111-116. doi: 10.1016/j.parkreldis.2019.02.028. Epub 2019 Feb 22.

引用本文的文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验