Suppr超能文献

Cox回归模型中Firth惩罚偏似然方法的信息准则

Information criteria for Firth's penalized partial likelihood approach in Cox regression models.

作者信息

Nagashima Kengo, Sato Yasunori

机构信息

Department of Global Clinical Research, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, 260-8670, Chiba, Japan.

出版信息

Stat Med. 2017 Sep 20;36(21):3422-3436. doi: 10.1002/sim.7368. Epub 2017 Jun 12.

Abstract

In the estimation of Cox regression models, maximum partial likelihood estimates might be infinite in a monotone likelihood setting, where partial likelihood converges to a finite value and parameter estimates converge to infinite values. To address monotone likelihood, previous studies have applied Firth's bias correction method to Cox regression models. However, while the model selection criteria for Firth's penalized partial likelihood approach have not yet been studied, a heuristic AIC-type information criterion can be used in a statistical package. Application of the heuristic information criterion to data obtained from a prospective observational study of patients with multiple brain metastases indicated that the heuristic information criterion selects models with many parameters and ignores the adequacy of the model. Moreover, we showed that the heuristic information criterion tends to select models with many regression parameters as the sample size increases. Thereby, in the present study, we propose an alternative AIC-type information criterion based on the risk function. A Bayesian information criterion type was also evaluated. Further, the presented simulation results confirm that the proposed criteria performed well in a monotone likelihood setting. The proposed AIC-type criterion was applied to prospective observational study data. Copyright © 2017 John Wiley & Sons, Ltd.

摘要

在Cox回归模型的估计中,在单调似然设置下最大偏似然估计可能是无穷大的,其中偏似然收敛到一个有限值,而参数估计收敛到无穷大值。为了解决单调似然问题,先前的研究已将Firth偏差校正方法应用于Cox回归模型。然而,虽然尚未研究Firth惩罚偏似然方法的模型选择标准,但可以在统计软件包中使用启发式AIC型信息准则。将启发式信息准则应用于从多脑转移患者的前瞻性观察研究中获得的数据表明,启发式信息准则选择具有许多参数的模型,而忽略了模型的充分性。此外,我们表明,随着样本量的增加,启发式信息准则倾向于选择具有许多回归参数的模型。因此,在本研究中,我们提出了一种基于风险函数的替代AIC型信息准则。还评估了贝叶斯信息准则类型。此外,给出的模拟结果证实了所提出的准则在单调似然设置下表现良好。所提出的AIC型准则应用于前瞻性观察研究数据。版权所有© 2017约翰威立父子有限公司。

相似文献

引用本文的文献

本文引用的文献

8
Bayesian information criterion for censored survival models.删失生存模型的贝叶斯信息准则。
Biometrics. 2000 Mar;56(1):256-62. doi: 10.1111/j.0006-341x.2000.00256.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验