Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah , Salt Lake City, Utah 84112, United States.
ACS Appl Mater Interfaces. 2017 Jun 28;9(25):21133-21146. doi: 10.1021/acsami.7b04351. Epub 2017 Jun 13.
Design and development of silica nanoparticles (SiO NPs) with a controlled degradation profile promises effective drug delivery with a predetermined carrier elimination profile. In this research, we fabricated a series of redox-responsive polysulfide-based biodegradable SiO NPs with low polydispersity and with variations in size (average diameters of 58 ± 7, 108 ± 11, 110 ± 9, 124 ± 9, and 332 ± 6 nm), porosity, and composition (disulfide vs tetrasulfide bonds). The degradation kinetics of the nanoparticles was analyzed in the presence of 8 mM glutathione (GSH), mimicking the intracellular reducing condition. Results indicate that porosity and core composition play the predominant roles in the degradation rate of these nanoparticles. The 108 nm mesoporous disulfide-based nanoparticles showed the highest degradation rate among all the synthesized nanoparticles. Transmission electron microscopy (TEM) reveals that nonporous nanoparticles undergo surface erosion, while porous nanoparticles undergo both surface and bulk erosion under reducing environment. The cytotoxicity of these nanoparticles in RAW 264.7 macrophages was evaluated. Results show that all these nanoparticles with the IC values ranging from 233 ± 42 to 705 ± 17 μg mL do not have cytotoxic effect in macrophages at concentrations less than 125 μg mL. The degradation products of these nanoparticles collected within 15 days did not show cytotoxicity in the same macrophage cell line after 24 h of incubation. In vitro doxorubicin (DOX) release was examined in 108 nm mesoporous disulfide-based nanoparticles in the absence and presence of 8 mM GSH. It was shown that drug release depends on intracellular reducing conditions. Due to their ease of synthesis and scale up, robust structure, and the ability to control size, composition, release, and elimination, biodegradable SiO NPs provide an alternative platform for delivery of bioactive and imaging agents.
设计和开发具有可控降解特性的二氧化硅纳米颗粒(SiO NPs)有望实现有效的药物递送,并具有预定的载体消除特性。在这项研究中,我们制备了一系列具有低多分散性和不同尺寸(平均直径为 58±7、108±11、110±9、124±9 和 332±6nm)、孔隙率和组成(二硫键与四硫键)的氧化还原响应型基于多硫化物的可生物降解的 SiO NPs。在存在 8mM 谷胱甘肽(GSH)的情况下分析了纳米颗粒的降解动力学,模拟了细胞内的还原条件。结果表明,孔隙率和核组成在这些纳米颗粒的降解速率中起着主要作用。108nm 介孔二硫键基纳米颗粒在所有合成的纳米颗粒中表现出最高的降解速率。透射电子显微镜(TEM)显示,无孔纳米颗粒经历表面侵蚀,而多孔纳米颗粒在还原环境下经历表面和体相侵蚀。在 RAW 264.7 巨噬细胞中评估了这些纳米颗粒的细胞毒性。结果表明,所有这些纳米颗粒的 IC 值范围为 233±42 至 705±17μg mL,在浓度低于 125μg mL 时,对巨噬细胞没有细胞毒性作用。在相同的巨噬细胞系中,在孵育 24 小时后,在 15 天内收集的这些纳米颗粒的降解产物没有显示出细胞毒性。在不存在和存在 8mM GSH 的情况下,研究了 108nm 介孔二硫键基纳米颗粒中的阿霉素(DOX)体外释放。结果表明,药物释放取决于细胞内的还原条件。由于其易于合成和放大、坚固的结构以及控制尺寸、组成、释放和消除的能力,可生物降解的 SiO NPs 为生物活性和成像剂的递送提供了替代平台。