文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于癌症诊断与治疗的智能纳米材料。

Smart nanomaterials for cancer diagnosis and treatment.

作者信息

Singh Ragini, Sharma Ayush, Saji Joel, Umapathi Akhela, Kumar Santosh, Daima Hemant Kumar

机构信息

College of Agronomy, Liaocheng University, Liaocheng, 252059, Shandong, China.

Amity Center for Nanobiotechnology and Nanomedicine (ACNN), Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303002, Rajasthan, India.

出版信息

Nano Converg. 2022 May 15;9(1):21. doi: 10.1186/s40580-022-00313-x.


DOI:10.1186/s40580-022-00313-x
PMID:35569081
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9108129/
Abstract

Innovations in nanomedicine has guided the improved outcomes for cancer diagnosis and therapy. However, frequent use of nanomaterials remains challenging due to specific limitations like non-targeted distribution causing low signal-to-noise ratio for diagnostics, complex fabrication, reduced-biocompatibility, decreased photostability, and systemic toxicity of nanomaterials within the body. Thus, better nanomaterial-systems with controlled physicochemical and biological properties, form the need of the hour. In this context, smart nanomaterials serve as promising solution, as they can be activated under specific exogenous or endogenous stimuli such as pH, temperature, enzymes, or a particular biological molecule. The properties of smart nanomaterials make them ideal candidates for various applications like biosensors, controlled drug release, and treatment of various diseases. Recently, smart nanomaterial-based cancer theranostic approaches have been developed, and they are displaying better selectivity and sensitivity with reduced side-effects in comparison to conventional methods. In cancer therapy, the smart nanomaterials-system only activates in response to tumor microenvironment (TME) and remains in deactivated state in normal cells, which further reduces the side-effects and systemic toxicities. Thus, the present review aims to describe the stimulus-based classification of smart nanomaterials, tumor microenvironment-responsive behaviour, and their up-to-date applications in cancer theranostics. Besides, present review addresses the development of various smart nanomaterials and their advantages for diagnosing and treating cancer. Here, we also discuss about the drug targeting and sustained drug release from nanocarriers, and different types of nanomaterials which have been engineered for this intent. Additionally, the present challenges and prospects of nanomaterials in effective cancer diagnosis and therapeutics have been discussed.

摘要

纳米医学的创新推动了癌症诊断和治疗效果的改善。然而,由于存在一些特定限制,纳米材料的频繁使用仍然具有挑战性,这些限制包括非靶向分布导致诊断时信噪比低、制造复杂、生物相容性降低、光稳定性下降以及纳米材料在体内的全身毒性。因此,需要具有可控物理化学和生物学特性的更好的纳米材料系统。在这种背景下,智能纳米材料是一种很有前景的解决方案,因为它们可以在特定的外源性或内源性刺激(如pH值、温度、酶或特定生物分子)下被激活。智能纳米材料的特性使其成为生物传感器、控释药物以及各种疾病治疗等各种应用的理想候选材料。最近,基于智能纳米材料的癌症诊疗方法已经得到开发,与传统方法相比,它们显示出更好的选择性和敏感性,且副作用更小。在癌症治疗中,智能纳米材料系统仅在肿瘤微环境(TME)的响应下被激活,而在正常细胞中保持失活状态,这进一步降低了副作用和全身毒性。因此,本综述旨在描述智能纳米材料基于刺激的分类、肿瘤微环境响应行为及其在癌症诊疗中的最新应用。此外,本综述还阐述了各种智能纳米材料的开发及其在癌症诊断和治疗方面的优势。在此,我们还讨论了纳米载体的药物靶向和药物持续释放,以及为此目的设计的不同类型的纳米材料。此外,还讨论了纳米材料在有效癌症诊断和治疗方面目前面临的挑战和前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cd7/9108129/d6f8efbb0b3f/40580_2022_313_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cd7/9108129/d184b2db3c66/40580_2022_313_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cd7/9108129/560c40c73c54/40580_2022_313_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cd7/9108129/b23623c0268b/40580_2022_313_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cd7/9108129/15f977bffa1c/40580_2022_313_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cd7/9108129/a1d902c30129/40580_2022_313_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cd7/9108129/434356a13ad3/40580_2022_313_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cd7/9108129/e15d6bdf9125/40580_2022_313_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cd7/9108129/a7e7e5af381d/40580_2022_313_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cd7/9108129/21f7fe1cb68f/40580_2022_313_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cd7/9108129/d6f8efbb0b3f/40580_2022_313_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cd7/9108129/d184b2db3c66/40580_2022_313_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cd7/9108129/560c40c73c54/40580_2022_313_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cd7/9108129/b23623c0268b/40580_2022_313_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cd7/9108129/15f977bffa1c/40580_2022_313_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cd7/9108129/a1d902c30129/40580_2022_313_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cd7/9108129/434356a13ad3/40580_2022_313_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cd7/9108129/e15d6bdf9125/40580_2022_313_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cd7/9108129/a7e7e5af381d/40580_2022_313_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cd7/9108129/21f7fe1cb68f/40580_2022_313_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cd7/9108129/d6f8efbb0b3f/40580_2022_313_Fig10_HTML.jpg

相似文献

[1]
Smart nanomaterials for cancer diagnosis and treatment.

Nano Converg. 2022-5-15

[2]
Smart nanomedicine agents for cancer, triggered by pH, glutathione, HO, or HS.

Int J Nanomedicine. 2019-7-24

[3]
Smart Nanomaterials in Cancer Theranostics: Challenges and Opportunities.

ACS Omega. 2023-4-10

[4]
Biomedical applications of stimuli-responsive nanomaterials.

MedComm (2020). 2024-7-20

[5]
Construction of Smart DNA-Based Drug Delivery Systems for Cancer Therapy.

Small. 2024-7

[6]
Hypoxia-modulatory nanomaterials to relieve tumor hypoxic microenvironment and enhance immunotherapy: Where do we stand?

Acta Biomater. 2021-4-15

[7]
Perspectives and advancements in the design of nanomaterials for targeted cancer theranostics.

Chem Biol Interact. 2020-8-6

[8]
Smart Drug Delivery Systems in Cancer Therapy.

Curr Drug Targets. 2018-2-8

[9]
Stimuli-responsive chitosan-based nanocarriers for cancer therapy.

Bioimpacts. 2017

[10]
Recent advances of polymeric nanoplatforms for cancer treatment: smart delivery systems (SDS), nanotheranostics and multidrug resistance (MDR) inhibition.

Biomed Mater. 2023-11-27

引用本文的文献

[1]
Advanced Nanomaterials Functionalized with Metal Complexes for Cancer Therapy: From Drug Loading to Targeted Cellular Response.

Pharmaceuticals (Basel). 2025-7-3

[2]
Application of smart responsive nanomaterials in the theranostics of gastrointestinal malignancies: Current status and future perspectives.

Coord Chem Rev. 2025-7-15

[3]
Pt(IV)-functionalised polyacrylic acid-coated iron oxide magnetic nanoparticles as redox-responsive cancer theranostics.

J Mater Chem B. 2025-7-4

[4]
Advances in programmable DNA nanostructures enabling stimuli-responsive drug delivery and multimodal biosensing.

RSC Chem Biol. 2025-6-17

[5]
Biopiezoelectric-based nanomaterials; a promising strategy in cancer therapy.

J Exp Clin Cancer Res. 2025-6-4

[6]
Developments in nanotechnology approaches for the treatment of solid tumors.

Exp Hematol Oncol. 2025-5-19

[7]
Emerging nanotechnologies and their role in early ovarian cancer detection, diagnosis and interventions.

J Ovarian Res. 2025-5-7

[8]
Dynamic Covalent Bond-Based Nanoassembly of Curcumin to Enhance the Selective Photothermal Therapy for Tumor Treatment.

Int J Nanomedicine. 2025-3-30

[9]
Magnetic-Plasmonic Core-Shell Nanoparticles: Properties, Synthesis and Applications for Cancer Detection and Treatment.

Nanomaterials (Basel). 2025-2-10

[10]
Innovative Nanomedicine Delivery: Targeting Tumor Microenvironment to Defeat Drug Resistance.

Pharmaceutics. 2024-12-3

本文引用的文献

[1]
Mitochondria-targeted nanoparticles (mitoNANO): An emerging therapeutic shortcut for cancer.

Biomater Biosyst. 2021-8-13

[2]
Boronic Acid-Based Hydrogels Undergo Self-Healing at Neutral and Acidic pH.

ACS Macro Lett. 2015-2-17

[3]
Surface refined Au nanoconjugate stimulates dermal cell migration: possible implication in wound healing.

RSC Adv. 2020-10-13

[4]
Surface Engineered Peroxidase-Mimicking Gold Nanoparticles to Subside Cell Inflammation.

Langmuir. 2022-2-8

[5]
In Vitro and In Vivo Approach of Hydrogen-Sulfide-Responsive Drug Release Driven by Azide-Functionalized Mesoporous Silica Nanoparticles.

ACS Appl Bio Mater. 2019-9-16

[6]
Small molecule based EGFR targeting of biodegradable nanoparticles containing temozolomide and Cy5 dye for greatly enhanced image-guided glioblastoma therapy.

Nanomedicine. 2022-4

[7]
Preparation and Application of NbO Nanofibers in CO Photoconversion.

Nanomaterials (Basel). 2021-12-1

[8]
Stimulus-responsive nanomaterials under physical regulation for biomedical applications.

J Mater Chem B. 2021-12-8

[9]
Toxicity of Nanoparticles in Biomedical Application: Nanotoxicology.

J Toxicol. 2021-7-30

[10]
Piezoelectric Nanomaterials Activated by Ultrasound: The Pathway from Discovery to Future Clinical Adoption.

ACS Nano. 2021-7-27

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索