Scsukova Sona, Bujnakova Mlynarcikova A, Kiss A, Rollerova E
.
Endocr Regul. 2017 Apr 25;51(2):96-104. doi: 10.1515/enr-2017-0009.
Development of nanoparticles (NPs) for biomedical applications, including medical imaging and drug delivery, is currently undergoing a dramatic expansion. Diverse effects of different type NPs relating to mammalian reproductive tissues have been demonstrated. Th e objective of this study was to explore the in vitro effects of polymeric nanoparticle poly(ethylene glycol)-blockpolylactide methyl ether (PEG-b-PLA NPs) on functional state and viability of ovarian granulosa cells (GCs), which play an important role in maintaining ovarian function and female fertility.
The GCs isolated from porcine ovarian follicles were incubated with the different concentrations of PEG-b-PLA NPs (PEG average Mn=350 g/mol and PLA average Mn=1000 g/mol; 0.2-100 μg/ml) or poly(ethylene glycol) with an average molecular weight of 300 (PEG-300; 0.2- 40 mg/ml) in the presence or absence of stimulators, follicle-stimulating hormone (FSH; 1 μg/ml), androstenedione (100 nM), forskolin (10 μM) or 8Br-cAMP (100 μM), for different time periods (24, 48, 72 h). At the end of the incubation, progesterone and estradiol levels produced by GCs were measured in the culture media by radioimmunoassay. Th e viability of GCs was determined by the method using a colorimetric assay with MTT.
Treatment of GCs with PEG-b-PLA NPs induced a significant decrease in basal as well as FSH-stimulated progesterone secretion above the concentration of 20 and 4 μg/ml, respectively. Moreover, PEG-b-PLA NPs reduced forskolin-stimulated, but not cAMP-stimulated progesterone production by GCs. A dose-dependent inhibition of androstenedione-stimulated estradiol release by GCs was found by the action of PEG-b-PLA NPs. Incubation of GCs with PEG-300 significantly inhibited basal as well as FSH-stimulated progesterone secretion above the concentration of 40 mg/ml. PEG-b-PLA NPs and PEG-300 significantly reduced the viability of GCs at the highest tested concentrations (100 μg/ml and 40 mg/ml, respectively).
The obtained results indicate that polymeric NPs PEG-b-PLA might induce alterations in steroid hormone production by ovarian GCs and thereby could modify reproductive functions.
用于生物医学应用(包括医学成像和药物递送)的纳米颗粒(NPs)的研发目前正在急剧扩展。已证实不同类型的纳米颗粒对哺乳动物生殖组织有多种影响。本研究的目的是探讨聚乙二醇 - 聚丙交酯甲醚(PEG - b - PLA NPs)纳米颗粒对卵巢颗粒细胞(GCs)功能状态和活力的体外影响,卵巢颗粒细胞在维持卵巢功能和女性生育能力方面起着重要作用。
从猪卵巢卵泡中分离出的颗粒细胞与不同浓度的PEG - b - PLA NPs(PEG平均分子量Mn = 350 g/mol,PLA平均分子量Mn = 1000 g/mol;0.2 - 100 μg/ml)或平均分子量为300的聚乙二醇(PEG - 300;0.2 - 40 mg/ml)在有或无刺激物(促卵泡激素(FSH;1 μg/ml)、雄烯二酮(100 nM)、福斯高林(10 μM)或8 - 溴 - 环磷酸腺苷(8Br - cAMP;100 μM))存在的情况下孵育不同时间段(24、48、72小时)。孵育结束时,通过放射免疫测定法测量培养基中颗粒细胞产生的孕酮和雌二醇水平。颗粒细胞的活力通过MTT比色法测定。
用PEG - b - PLA NPs处理颗粒细胞,分别在浓度高于20 μg/ml和4 μg/ml时,诱导基础以及FSH刺激的孕酮分泌显著降低。此外,PEG - b - PLA NPs降低了福斯高林刺激的颗粒细胞孕酮生成,但不影响cAMP刺激的孕酮生成。发现PEG - b - PLA NPs的作用对雄烯二酮刺激的颗粒细胞雌二醇释放有剂量依赖性抑制。用PEG - 300孵育颗粒细胞,在浓度高于40 mg/ml时显著抑制基础以及FSH刺激的孕酮分泌。在最高测试浓度(分别为100 μg/ml和40 mg/ml)下,PEG - b - PLA NPs和PEG - 300显著降低了颗粒细胞的活力。
所得结果表明,聚合物纳米颗粒PEG - b - PLA可能会诱导卵巢颗粒细胞甾体激素产生的改变,从而可能改变生殖功能。