Suppr超能文献

针对氧化应激的代谢防御:迄今为止鲜有人走的道路。

Metabolic defence against oxidative stress: the road less travelled so far.

作者信息

Lemire J, Alhasawi A, Appanna V P, Tharmalingam S, Appanna V D

机构信息

The Biofilm Research Group, The Department of Biological Sciences, The University of Calgary, Calgary, AB, Canada.

Faculty of Science & Engineering, Laurentian University, Sudbury, ON, Canada.

出版信息

J Appl Microbiol. 2017 Oct;123(4):798-809. doi: 10.1111/jam.13509. Epub 2017 Aug 9.

Abstract

Bacteria have survived, and many have thrived, since antiquity in the presence of the highly-reactive chalcogen-oxygen (O ). They are known to evoke intricate strategies to defend themselves from the reactive by-products of oxygen-reactive oxygen species (ROS). Many of these detoxifying mechanisms have been extensively characterized; superoxide dismutase, catalases, alkyl hydroperoxide reductase and the glutathione (GSH)-cycling system are responsible for neutralizing specific ROS. Meanwhile, a pool of NADPH-the reductive engine of many ROS-combating enzymes-is maintained by metabolic enzymes including, but not exclusively, glucose-6 phosphate dehydrogenase (G6PDH) and NADP-dependent isocitrate dehydrogenase (ICDH-NADP). So, it is not surprising that evidence continues to emerge demonstrating the pivotal role metabolism plays in mitigating ROS toxicity. Stemming from its ability to concurrently decrease the production of the pro-oxidative metabolite, NADH, while augmenting the antioxidative metabolite, NADPH, metabolism is the fulcrum of cellular redox potential. In this review, we will discuss the mounting evidence positioning metabolism and metabolic shifts observed during oxidative stress, as critical strategies microbes utilize to thrive in environments that are rife with ROS. The contribution of ketoacids-moieties capable of non-enzymatic decarboxylation in the presence of oxidants-as ROS scavengers will be elaborated alongside the metabolic pathways responsible for their homeostases. Further, the signalling role of the carboxylic acids generated following the ketoacid-mediated detoxification of the ROS will be commented on within the context of oxidative stress.

摘要

自远古以来,细菌就在高反应性的硫族元素 - 氧(O)存在的情况下存活了下来,并且许多细菌还蓬勃发展。已知它们会引发复杂的策略来保护自己免受氧反应性氧物种(ROS)的反应性副产物的伤害。其中许多解毒机制已得到广泛研究;超氧化物歧化酶、过氧化氢酶、烷基过氧化氢还原酶和谷胱甘肽(GSH)循环系统负责中和特定的ROS。与此同时,许多对抗ROS的酶的还原引擎——烟酰胺腺嘌呤二核苷酸磷酸(NADPH)池,由包括但不限于葡萄糖 - 6磷酸脱氢酶(G6PDH)和NADP依赖性异柠檬酸脱氢酶(ICDH - NADP)在内的代谢酶维持。因此,越来越多的证据表明代谢在减轻ROS毒性方面发挥着关键作用也就不足为奇了。由于代谢能够同时减少促氧化代谢物烟酰胺腺嘌呤二核苷酸(NADH)的产生,同时增加抗氧化代谢物NADPH,所以它是细胞氧化还原电位的支点。在这篇综述中,我们将讨论越来越多的证据表明,代谢以及在氧化应激期间观察到的代谢变化,是微生物在充满ROS的环境中茁壮成长所利用的关键策略。酮酸——在有氧化剂存在时能够进行非酶促脱羧的部分——作为ROS清除剂的作用,将与负责其稳态的代谢途径一起详细阐述。此外,将在氧化应激的背景下评论酮酸介导的ROS解毒后产生的羧酸的信号传导作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验