Suppr超能文献

自然环境中植物识别的深度学习

Deep Learning for Plant Identification in Natural Environment.

作者信息

Sun Yu, Liu Yuan, Wang Guan, Zhang Haiyan

机构信息

School of Information Science and Technology, Beijing Forestry University, Beijing 100083, China.

出版信息

Comput Intell Neurosci. 2017;2017:7361042. doi: 10.1155/2017/7361042. Epub 2017 May 22.

Abstract

Plant image identification has become an interdisciplinary focus in both botanical taxonomy and computer vision. The first plant image dataset collected by mobile phone in natural scene is presented, which contains 10,000 images of 100 ornamental plant species in Beijing Forestry University campus. A 26-layer deep learning model consisting of 8 residual building blocks is designed for large-scale plant classification in natural environment. The proposed model achieves a recognition rate of 91.78% on the BJFU100 dataset, demonstrating that deep learning is a promising technology for smart forestry.

摘要

植物图像识别已成为植物分类学和计算机视觉领域的一个跨学科研究重点。本文展示了首个通过手机在自然场景中收集的植物图像数据集,该数据集包含北京林业大学校园内100种观赏植物的10000张图像。设计了一个由8个残差模块组成的26层深度学习模型,用于自然环境下的大规模植物分类。所提出的模型在BJFU100数据集上达到了91.78%的识别率,表明深度学习是智能林业中一项很有前景的技术。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c578/5458433/d2ee048e4340/CIN2017-7361042.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验