Alibardi Lorenzo
Comparative Histolab and Department of Biology, University of Bologna, Bologna, Italy.
J Exp Zool B Mol Dev Evol. 2017 Sep;328(6):493-514. doi: 10.1002/jez.b.22754. Epub 2017 Jun 14.
Tissue regeneration in lizards represents a unique model of regeneration and scarring in amniotes. The tail and limb contain putative stem cells but also dedifferentiating cells contribute to regeneration. Following tail amputation, inflammation is low and cell proliferation high, leading to regeneration while the intense inflammation in the limb leads to low proliferation and scarring. FGFs stimulate tail and limb regeneration and are present in the wound epidermis and blastema while they disappear in the limb wound epidermis 2-3 weeks postamputation in the scarring outgrowth. FGFs localize in the tail blastema and the apical epidermal peg (AEP), an epidermal microregion that allows tail growth but is absent in the limb. Inflammatory cells invade the limb blastema and wound epidermis, impeding the formation of an AEP. An embryonic program of growth is activated in the tail, dominated by Wnt-positive and -negative regulators of cell proliferation and noncoding RNAs, that represent the key regenerative genes. The balanced actions of these regulators likely impede the formation of a tumor in the tail tip. Genes for FACIT and fibrillar collagens, protease inhibitors, and embryonic keratins are upregulated in the regenerating tail blastema. A strong downregulation of genes for both B and T-lymphocyte activation suggests the regenerating tail blastema is a temporal immune-tolerated organ, whereas a scarring program is activated in the limb. Wnt inhibitors, pro-inflammatory genes, negative regulators of cell proliferation, downregulation of myogenic genes, proteases, and oxidases favoring scarring are upregulated. The evolution of an efficient immune system may be the main limiting barrier for organ regeneration in amniotes, and the poor regeneration of mammals and birds is associated with the efficiency of their mature immune system. This does not tolerate embryonic antigens formed in reprogrammed embryonic cells (as for neoplastic cells) that are consequently eliminated impeding the regeneration of lost organs.
蜥蜴的组织再生代表了羊膜动物再生和瘢痕形成的独特模型。尾巴和四肢含有假定的干细胞,但去分化细胞也对再生有贡献。尾巴截肢后,炎症反应低而细胞增殖高,从而导致再生;而四肢强烈的炎症反应则导致增殖率低和瘢痕形成。成纤维细胞生长因子(FGFs)刺激尾巴和四肢的再生,存在于伤口表皮和芽基中,而在瘢痕形成的四肢伤口表皮中,截肢2 - 3周后它们就消失了。FGFs定位于尾巴芽基和顶端表皮栓(AEP),AEP是一个允许尾巴生长但在四肢中不存在的表皮微区域。炎性细胞侵入四肢芽基和伤口表皮,阻碍AEP的形成。尾巴中激活了一个胚胎生长程序,由细胞增殖的Wnt正负调节因子和非编码RNA主导,这些代表了关键的再生基因。这些调节因子的平衡作用可能会阻碍尾巴尖端肿瘤的形成。FACIT和纤维状胶原蛋白、蛋白酶抑制剂以及胚胎角蛋白的基因在再生的尾巴芽基中上调。B和T淋巴细胞激活相关基因的强烈下调表明再生的尾巴芽基是一个暂时免疫耐受的器官,而四肢中则激活了瘢痕形成程序。Wnt抑制剂、促炎基因、细胞增殖的负调节因子、肌源性基因的下调、蛋白酶和有利于瘢痕形成的氧化酶上调。高效免疫系统的进化可能是羊膜动物器官再生的主要限制障碍,哺乳动物和鸟类再生能力差与它们成熟免疫系统的效率有关。这种免疫系统不容忍在重编程胚胎细胞中形成的胚胎抗原(如肿瘤细胞中的抗原),因此这些抗原被清除,从而阻碍了缺失器官的再生。