Suppr超能文献

导数核:数值与应用。

Derivative Kernels: Numerics and Applications.

出版信息

IEEE Trans Image Process. 2017 Oct;26(10):4596-4611. doi: 10.1109/TIP.2017.2713950. Epub 2017 Jun 8.

Abstract

A generalized framework for numerical differentiation (ND) is proposed for constructing a finite impulse response (FIR) filter in closed form. The framework regulates the frequency response of ND filters for arbitrary derivative-order and cutoff frequency selected parameters relying on interpolating power polynomials and maximally flat design techniques. Compared with the state-of-the-art solutions, such as Gaussian kernels, the proposed ND filter is sharply localized in the Fourier domain with ripple-free artifacts. Here, we construct 2D MaxFlat kernels for image directional differentiation to calculate image differentials for arbitrary derivative order, cutoff level and steering angle. The resulted kernel library renders a new solution capable of delivering discrete approximation of gradients, Hessian, and higher-order tensors in numerous applications. We tested the utility of this library on three different imaging applications with main focus on the unsharp masking. The reported results highlight the high efficiency of the 2D MaxFlat kernel and its versatility with respect to robustness and parameter control accuracy.

摘要

提出了一种广义的数值微分(ND)框架,用于构造有限脉冲响应(FIR)滤波器的闭式解。该框架通过内插幂多项式和最大平坦设计技术,调节任意阶导数和截止频率选择参数的 ND 滤波器的频率响应。与现有的解决方案(如高斯核)相比,所提出的 ND 滤波器在傅里叶域中具有无纹波的尖锐局部化。在这里,我们构建二维 MaxFlat 核用于图像方向微分,以计算任意阶导数、截止水平和转向角的图像微分。所得到的核库提供了一种新的解决方案,能够在许多应用中提供梯度、Hessian 和更高阶张量的离散逼近。我们在三个不同的成像应用中测试了这个库的实用性,主要集中在非锐化掩模上。所报告的结果突出了二维 MaxFlat 核的高效率及其在稳健性和参数控制精度方面的多功能性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验