School of Computer Science, Simon Fraser University, Burnaby, BC, Canada.
IEEE Trans Vis Comput Graph. 2010 Nov-Dec;16(6):1495-504. doi: 10.1109/TVCG.2010.160.
We investigate the use of a Fourier-domain derivative error kernel to quantify the error incurred while estimating the gradient of a function from scalar point samples on a regular lattice. We use the error kernel to show that gradient reconstruction quality is significantly enhanced merely by shifting the reconstruction kernel to the centers of the principal lattice directions. Additionally, we exploit the algebraic similarities between the scalar and derivative error kernels to design asymptotically optimal gradient estimation filters that can be factored into an infinite impulse response interpolation prefilter and a finite impulse response directional derivative filter. This leads to a significant performance gain both in terms of accuracy and computational efficiency. The interpolation prefilter provides an accurate scalar approximation and can be re-used to cheaply compute directional derivatives on-the-fly without the need to store gradients. We demonstrate the impact of our filters in the context of volume rendering of scalar data sampled on the Cartesian and Body-Centered Cubic lattices. Our results rival those obtained from other competitive gradient estimation methods while incurring no additional computational or storage overhead.
我们研究了在从规则格点上的标量点样本估计函数的梯度时使用傅里叶域导数误差核来量化所产生的误差。我们使用误差核表明,通过将重建核移动到主晶格方向的中心,重建质量可以显著提高。此外,我们利用标量和导数误差核之间的代数相似性,设计了渐近最优的梯度估计滤波器,这些滤波器可以分解为无限脉冲响应插值前置滤波器和有限脉冲响应方向导数滤波器。这在准确性和计算效率方面都带来了显著的性能提升。插值前置滤波器提供了准确的标量近似,并且可以重复使用,以廉价地在线计算方向导数,而无需存储梯度。我们在笛卡尔和体心立方晶格上采样的标量数据的体绘制上下文中展示了我们滤波器的影响。我们的结果与其他竞争的梯度估计方法相当,而不会增加额外的计算或存储开销。