Suppr超能文献

p-n CuFeO-ZnO 异质结光阳极的纳米工程,改善光吸收和电荷收集,用于光电化学水氧化。

Nano-engineering of p-n CuFeO-ZnO heterojunction photoanode with improved light absorption and charge collection for photoelectrochemical water oxidation.

机构信息

Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector-III, Salt Lake, Kolkata 700106, India.

出版信息

Nanotechnology. 2017 Aug 11;28(32):325401. doi: 10.1088/1361-6528/aa7998. Epub 2017 Jun 14.

Abstract

The effective utilization of abundant visible solar light for photoelectrochemical water splitting is a green approach for energy harvesting, to reduce the enormous rise of carbon content in the atmosphere. Here, a novel efficient design strategy for p-n type nano-heterojunction photoanodes is demonstrated, with the goal of improving water splitting efficiency by growing low band gap p-CuFeO nanolayers on n-ZnO nanorods by an easy and scalable electrochemical route. The photoconversion efficiency of p-n CuFeO/ZnO photoanodes is found to be ∼450% higher than that of pristine ZnO nanorod electrodes under visible solar light illumination (λ > 420 nm, intensity 10 mW cm). The p-n CuFeO/ZnO nano-engineering not only boosts the visible light absorption but also resolves limitations regarding effective charge carrier separation and transportation due to interfacial band alignment. This photoanode also shows remarkably enhanced stability, where the formation of p-n nano-heterojunction enhances the easy migration of holes to the electrode/electrolyte interface, and of electrons to the counter electrode (Pt) for hydrogen generation. Therefore, this work demonstrates that p-n nano-engineering is a potential strategy to design light-harvesting electrodes for water splitting and clean energy generation.

摘要

有效利用丰富的可见光进行光电化学水分解是一种绿色的能源获取方式,可以减少大气中碳含量的巨大增加。在这里,展示了一种新颖的高效 p-n 型纳米异质结光阳极设计策略,通过一种简单且可扩展的电化学方法在 n-ZnO 纳米棒上生长低带隙 p-CuFeO 纳米层,以提高水分解效率。在可见光照射下(λ>420nm,强度 10mWcm),发现 p-n CuFeO/ZnO 光阳极的光电转换效率比原始 ZnO 纳米棒电极高约 450%。p-n CuFeO/ZnO 纳米工程不仅提高了可见光吸收,还解决了由于界面能带排列导致的有效载流子分离和输运的限制。这种光阳极还表现出显著增强的稳定性,其中 p-n 纳米异质结的形成促进了空穴向电极/电解质界面的容易迁移,以及电子向析氢的对电极(Pt)的迁移。因此,这项工作表明,p-n 纳米工程是设计用于水分解和清洁能源产生的光收集电极的一种有潜力的策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验