Department of Chemistry, University of South Florida, 4202 E Fowler Ave, Tampa, FL, 33620, USA.
Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37831, USA.
Adv Mater. 2017 Aug;29(31). doi: 10.1002/adma.201700665. Epub 2017 Jun 14.
The primary challenge in materials design and synthesis is achieving the balance between performance and economy for real-world application. This issue is addressed by creating a thiol functionalized porous organic polymer (POP) using simple free radical polymerization techniques to prepare a cost-effective material with a high density of chelating sites designed for mercury capture and therefore environmental remediation. The resulting POP is able to remove aqueous and airborne mercury with uptake capacities of 1216 and 630 mg g , respectively. The material demonstrates rapid kinetics, capable of dropping the mercury concentration from 5 ppm to 1 ppb, lower than the US Environmental Protection Agency's drinking water limit (2 ppb), within 10 min. Furthermore, the material has the added benefits of recyclability, stability in a broad pH range, and selectivity for toxic metals. These results are attributed to the material's physical properties, which include hierarchical porosity, a high density of chelating sites, and the material's robustness, which improve the thiol availability to bind with mercury as determined by X-ray photoelectron spectroscopy and X-ray absorption fine structure studies. The work provides promising results for POPs as an economical material for multiple environmental remediation applications.
在材料设计和合成中,主要的挑战是在实际应用中实现性能和经济性之间的平衡。为了解决这个问题,我们使用简单的自由基聚合技术创建了一种巯基功能化的多孔有机聚合物(POP),以制备一种具有高螯合位点密度的经济高效材料,用于汞的捕获和因此的环境修复。所得到的 POP 能够分别以 1216 和 630mg/g 的吸附量去除水相和气相中的汞。该材料具有快速动力学特性,能够在 10 分钟内将汞浓度从 5ppm 降至 1ppb,低于美国环保署的饮用水限值(2ppb)。此外,该材料还具有可回收性、在宽 pH 范围内的稳定性以及对有毒金属的选择性等优点。这些结果归因于该材料的物理性质,包括分级孔隙率、高螯合位点密度以及材料的坚固性,这提高了巯基与汞结合的可用性,这一点通过 X 射线光电子能谱和 X 射线吸收精细结构研究得到了证实。这项工作为 POP 作为一种用于多种环境修复应用的经济高效材料提供了有前景的结果。