Department of Cancer Biology, The University of Texas MD Anderson Cancer Center , Houston, Texas 77030, United States.
ACS Nano. 2017 Jul 25;11(7):6691-6702. doi: 10.1021/acsnano.7b00824. Epub 2017 Jun 19.
Development of high-fidelity three-dimensional (3D) models to recapitulate the tumor microenvironment is essential for studying tumor biology and discovering anticancer drugs. Here we report a method to engineer the 3D microenvironment of human tumors, by encapsulating cancer cells in the core of microcapsules with a hydrogel shell for miniaturized 3D culture to obtain avascular microtumors first. The microtumors are then used as the building blocks for assembling with endothelial cells and other stromal cells to create macroscale 3D vascularized tumor. Cells in the engineered 3D microenvironment can yield significantly larger tumors in vivo than 2D-cultured cancer cells. Furthermore, the 3D vascularized tumors are 4.7 and 139.5 times more resistant to doxorubicin hydrochloride (a commonly used chemotherapy drug) than avascular microtumors and 2D-cultured cancer cells, respectively. Moreover, this high drug resistance of the 3D vascularized tumors can be overcome by using nanoparticle-mediated drug delivery. The high-fidelity 3D tumor model may be valuable for studying the effect of microenvironment on tumor progression, invasion, and metastasis and for developing effective therapeutic strategy to fight against cancer.
开发能够重现肿瘤微环境的高保真度三维(3D)模型对于研究肿瘤生物学和发现抗癌药物至关重要。在这里,我们报告了一种工程化人类肿瘤 3D 微环境的方法,即将癌细胞包裹在具有水凝胶壳的微胶囊的核心中,用于小型化 3D 培养,首先获得无血管微肿瘤。然后,将微肿瘤用作与内皮细胞和其他基质细胞组装的构建块,以创建宏观 3D 血管化肿瘤。在工程化的 3D 微环境中的细胞在体内产生的肿瘤比 2D 培养的癌细胞大得多。此外,与无血管微肿瘤和 2D 培养的癌细胞相比,3D 血管化肿瘤对盐酸多柔比星(一种常用的化疗药物)的耐药性分别高 4.7 倍和 139.5 倍。此外,通过使用纳米颗粒介导的药物输送可以克服 3D 血管化肿瘤的这种高耐药性。这种高保真度的 3D 肿瘤模型可能对于研究微环境对肿瘤进展、侵袭和转移的影响以及开发有效的抗癌治疗策略非常有价值。