Loftus Matthew S, Verville Nancy, Kedes Dean H
Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA.
Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
J Virol. 2017 Aug 10;91(17). doi: 10.1128/JVI.00304-17. Print 2017 Sep 1.
Productive viral infection often depends on the manipulation of the cytoskeleton. Herpesviruses, including rhesus monkey rhadinovirus (RRV) and its close homolog, the oncogenic human gammaherpesvirus Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8 (KSHV/HHV8), exploit microtubule (MT)-based retrograde transport to deliver their genomes to the nucleus. Subsequently, during the lytic phase of the life cycle, the maturing viral particles undergo orchestrated translocation to specialized regions within the cytoplasm, leading to tegumentation, secondary envelopment, and then egress. As a result, we hypothesized that RRV might induce changes in the cytoskeleton at both early and late stages of infection. Using confocal imaging, we found that RRV infection led to the thickening and acetylation of MTs emanating from the MT-organizing center (MTOC) shortly after viral entry and more pronounced and diffuse MT reorganization during peak stages of lytic gene expression and virion production. We subsequently identified open reading frame 52 (ORF52), a multifunctional and abundant tegument protein, as being the only virally encoded component responsible for these cytoskeletal changes. Mutational and modeling analyses indicated that an evolutionarily conserved, truncated leucine zipper motif near the N terminus as well as a strictly conserved arginine residue toward the C terminus of ORF52 play critical roles in its ability to rearrange the architecture of the MT cytoskeleton. Taken together, our findings combined with data from previous studies describing diverse roles for ORF52 suggest that it likely binds to different cellular components, thereby allowing context-dependent modulation of function. A thorough understanding of the processes governing viral infection includes knowledge of how viruses manipulate their intracellular milieu, including the cytoskeleton. Altering the dynamics of actin or MT polymerization, for example, is a common strategy employed by viruses to ensure efficient entry, maturation, and egress as well as the avoidance of antiviral defenses through the sequestration of key cellular factors. We found that infection with RRV, a homolog of the human pathogen KSHV, led to perinuclear wrapping by acetylated MT bundles and identified ORF52 as the viral protein underlying these changes. Remarkably, incoming virions were able to supply sufficient ORF52 to induce MT thickening and acetylation near the MTOC, potentially aiding in the delivery viral genomes to the nucleus. Although the function of MT alterations during late stages of infection requires further study, ORF52 shares functional and structural similarities with alphaherpesvirus VP22, underscoring the evolutionary importance of MT cytoskeletal manipulations for this virus family.
有 productive 的病毒感染通常依赖于对细胞骨架的操控。疱疹病毒,包括恒河猴疱疹病毒(RRV)及其密切同源物、致癌性人类γ疱疹病毒卡波西肉瘤相关疱疹病毒/人类疱疹病毒 8(KSHV/HHV8),利用基于微管(MT)的逆行转运将其基因组递送至细胞核。随后,在生命周期的裂解阶段,成熟的病毒颗粒会精心编排地转运至细胞质内的特定区域,从而进行被膜化、二次包膜,然后释放。因此,我们推测 RRV 可能在感染的早期和晚期都会诱导细胞骨架发生变化。利用共聚焦成像,我们发现 RRV 感染在病毒进入后不久就导致从微管组织中心(MTOC)发出的微管增厚和乙酰化,并且在裂解基因表达和病毒粒子产生的高峰期出现更明显且弥漫的微管重组。我们随后鉴定出开放阅读框 52(ORF52),一种多功能且丰富的被膜蛋白,是导致这些细胞骨架变化的唯一病毒编码成分。突变和建模分析表明,ORF52 靠近 N 端的一个进化保守的截短亮氨酸拉链基序以及朝向 C 端的一个严格保守的精氨酸残基在其重新排列微管细胞骨架结构的能力中起关键作用。综上所述,我们的发现与先前描述 ORF52 多种作用的数据相结合表明,它可能与不同的细胞成分结合,从而实现功能的上下文依赖性调节。对病毒感染调控过程的透彻理解包括了解病毒如何操控其细胞内环境,包括细胞骨架。例如,改变肌动蛋白或微管聚合的动力学是病毒常用的策略,以确保高效进入、成熟和释放,以及通过隔离关键细胞因子来逃避抗病毒防御。我们发现,感染人类病原体 KSHV 的同源物 RRV 会导致被乙酰化的微管束在核周包裹,并鉴定出 ORF52 是这些变化背后的病毒蛋白。值得注意的是,进入的病毒粒子能够提供足够的 ORF52 来诱导 MTOC 附近的微管增厚和乙酰化,这可能有助于将病毒基因组递送至细胞核。尽管感染后期微管改变的功能需要进一步研究,但 ORF52 与α疱疹病毒 VP22 具有功能和结构上的相似性,这突出了微管细胞骨架操控对这个病毒家族的进化重要性。