Suppr超能文献

微管蛋白的翻译后修饰:微管功能多样性的途径

Post-translational modifications of tubulin: pathways to functional diversity of microtubules.

作者信息

Song Yuyu, Brady Scott T

机构信息

Yale School of Medicine, Department of Genetics and Howard Hughes Medical Institute, Boyer Center, 295 Congress Avenue, New Haven, CT 065105, USA.

Department of Anatomy and Cell Biology, 808 S. Wood St., Rm 578 (M/C 512), University of Illinois at Chicago, Chicago, IL 60612, USA.

出版信息

Trends Cell Biol. 2015 Mar;25(3):125-36. doi: 10.1016/j.tcb.2014.10.004. Epub 2014 Nov 25.

Abstract

Tubulin and microtubules are subject to a remarkable number of post-translational modifications. Understanding the roles these modifications play in determining the functions and properties of microtubules has presented a major challenge that is only now being met. Many of these modifications are found concurrently, leading to considerable diversity in cellular microtubules, which varies with development, differentiation, cell compartment, and cell cycle. We now know that post-translational modifications of tubulin affect, not only the dynamics of the microtubules, but also their organization and interaction with other cellular components. Many early suggestions of how post-translational modifications affect microtubules have been replaced with new ideas and even new modifications as our understanding of cellular microtubule diversity comes into focus.

摘要

微管蛋白和微管会经历大量的翻译后修饰。了解这些修饰在决定微管功能和特性方面所起的作用,是一项重大挑战,而直到现在才得以应对。许多这些修饰是同时存在的,导致细胞微管具有相当大的多样性,这种多样性会随着发育、分化、细胞区室和细胞周期而变化。我们现在知道,微管蛋白的翻译后修饰不仅会影响微管的动态变化,还会影响其组织以及与其他细胞成分的相互作用。随着我们对细胞微管多样性的理解逐渐清晰,许多关于翻译后修饰如何影响微管的早期观点已被新的想法甚至新的修饰所取代。

相似文献

1
Post-translational modifications of tubulin: pathways to functional diversity of microtubules.
Trends Cell Biol. 2015 Mar;25(3):125-36. doi: 10.1016/j.tcb.2014.10.004. Epub 2014 Nov 25.
2
Tubulin Post-Translational Modifications and Microtubule Dynamics.
Int J Mol Sci. 2017 Oct 21;18(10):2207. doi: 10.3390/ijms18102207.
4
Investigating tubulin posttranslational modifications with specific antibodies.
Methods Cell Biol. 2013;115:247-67. doi: 10.1016/B978-0-12-407757-7.00016-5.
5
Proteomic Profiling and Functional Characterization of Multiple Post-Translational Modifications of Tubulin.
J Proteome Res. 2015 Aug 7;14(8):3292-304. doi: 10.1021/acs.jproteome.5b00308. Epub 2015 Jul 17.
6
Post-translational modifications of tubulin.
Curr Biol. 2014 May 5;24(9):R351-4. doi: 10.1016/j.cub.2014.03.032.
7
Post-translational regulation of the microtubule cytoskeleton: mechanisms and functions.
Nat Rev Mol Cell Biol. 2011 Nov 16;12(12):773-86. doi: 10.1038/nrm3227.
8
Tubulin post-translational modifications: encoding functions on the neuronal microtubule cytoskeleton.
Trends Neurosci. 2010 Aug;33(8):362-72. doi: 10.1016/j.tins.2010.05.001. Epub 2010 Jun 11.
9
[Compartmentalization and plasticity of the microtubule network].
Med Sci (Paris). 2013 Feb;29(2):194-9. doi: 10.1051/medsci/2013292018. Epub 2013 Feb 28.
10
Tubulin post-translational modifications control neuronal development and functions.
Dev Neurobiol. 2021 Apr;81(3):253-272. doi: 10.1002/dneu.22774. Epub 2020 Aug 29.

引用本文的文献

1
Acetylation and Deacetylation of Cytoskeleton-Associated Proteins.
Results Probl Cell Differ. 2025;75:73-89. doi: 10.1007/978-3-031-91459-1_3.
3
Ninein isoform contributions to intracellular processes and macrophage immune function.
J Biol Chem. 2025 May;301(5):108419. doi: 10.1016/j.jbc.2025.108419. Epub 2025 Mar 18.
4
CARM1 regulates tubulin autoregulation through PI3KC2α R175 methylation.
Cell Commun Signal. 2025 Mar 5;23(1):120. doi: 10.1186/s12964-025-02124-z.
6
Blocking microtubule deacetylation inhibits anaphase chromosome movements in crane-fly spermatocytes.
PLoS One. 2024 Dec 2;19(12):e0311691. doi: 10.1371/journal.pone.0311691. eCollection 2024.
7
Dissecting the pH Sensitivity of Kinesin-Driven Transport.
J Phys Chem B. 2024 Dec 5;128(48):11855-11864. doi: 10.1021/acs.jpcb.4c03850. Epub 2024 Nov 22.
9
The RNA-binding protein EIF4A3 promotes axon development by direct control of the cytoskeleton.
Cell Rep. 2024 Sep 24;43(9):114666. doi: 10.1016/j.celrep.2024.114666. Epub 2024 Aug 24.
10
Spatial arrangement, polarity, and posttranslational modifications of the microtubule system in the Drosophila eye.
Cell Tissue Res. 2024 Nov;398(2):123-137. doi: 10.1007/s00441-024-03914-6. Epub 2024 Aug 17.

本文引用的文献

1
Tubulin glycylases are required for primary cilia, control of cell proliferation and tumor development in colon.
EMBO J. 2014 Oct 1;33(19):2247-60. doi: 10.15252/embj.201488466. Epub 2014 Sep 1.
2
The cytosolic carboxypeptidases CCP2 and CCP3 catalyze posttranslational removal of acidic amino acids.
Mol Biol Cell. 2014 Oct 1;25(19):3017-27. doi: 10.1091/mbc.E14-06-1072. Epub 2014 Aug 7.
3
Molecular basis for age-dependent microtubule acetylation by tubulin acetyltransferase.
Cell. 2014 Jun 5;157(6):1405-1415. doi: 10.1016/j.cell.2014.03.061.
4
Regulation of microtubule motors by tubulin isotypes and post-translational modifications.
Nat Cell Biol. 2014 Apr;16(4):335-44. doi: 10.1038/ncb2920. Epub 2014 Mar 16.
6
HDAC6: physiological function and its selective inhibitors for cancer treatment.
Drug Discov Ther. 2013 Dec;7(6):233-42. doi: 10.5582/ddt.2013.v7.6.233.
7
Effects of tubulin acetylation and tubulin acetyltransferase binding on microtubule structure.
Mol Biol Cell. 2014 Jan;25(2):257-66. doi: 10.1091/mbc.E13-07-0387. Epub 2013 Nov 13.
8
Injury-induced HDAC5 nuclear export is essential for axon regeneration.
Cell. 2013 Nov 7;155(4):894-908. doi: 10.1016/j.cell.2013.10.004.
9
αTAT1 catalyses microtubule acetylation at clathrin-coated pits.
Nature. 2013 Oct 24;502(7472):567-70. doi: 10.1038/nature12571. Epub 2013 Oct 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验