Suppr超能文献

GH4169 合金内喷液电化学磨削材料去除率的研究。

Investigation of material removal in inner-jet electrochemical grinding of GH4169 alloy.

机构信息

College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.

AVIC Jincheng Nanjing Engineering Institute of Aircraft Systems, Nanjing, 211106, China.

出版信息

Sci Rep. 2017 Jun 14;7(1):3482. doi: 10.1038/s41598-017-03770-1.

Abstract

Electrochemical grinding (ECG) is a low-cost and highly efficient process for application to difficult-to-machine materials. In this process, the electrolyte supply mode directly affects machining stability and efficiency. This paper proposes a flow channel structure for an abrasive tool to be used for inner-jet ECG of GH4169 alloy. The tool is based on a dead-end tube with electrolyte outlet holes located in the sidewall. The diameter and number of outlet holes are determined through numerical simulation with the aim of achieving uniform electrolyte flow in the inter-electrode gap. Experiments show that the maximum feed rate and material removal rate are both improved by increasing the diamond grain size, applied voltage, electrolyte temperature and pressure. For a machining depth of 3 mm in a single pass, a feed rate of 2.4 mm min is achieved experimentally. At this feed rate and machining depth, a sample is produced along a feed path under computer numerical control, with the feed direction changing four times. Inner-jet ECG with the proposed abrasive tool shows good efficiency and flexibility for processing hard-to-cut metals with a large removal depth.

摘要

电化学研磨(ECG)是一种低成本、高效率的工艺,适用于难加工材料。在这个过程中,电解液的供应方式直接影响加工的稳定性和效率。本文提出了一种用于 GH4169 合金内射电化学研磨的磨具的流道结构。该工具基于一个死端管,其电解液出口孔位于侧壁上。通过数值模拟确定了出口孔的直径和数量,目的是实现电极间隙内电解液的均匀流动。实验表明,通过增加金刚石粒径、施加电压、电解液温度和压力,可以提高最大进给率和材料去除率。在单次加工深度为 3mm 的情况下,实验中实现了 2.4mm/min 的进给率。在这个进给率和加工深度下,通过计算机数控沿着进给路径生产一个样本,进给方向改变四次。带有这种磨具的内射电化学研磨在处理大去除深度的难切削金属时显示出良好的效率和灵活性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6bdd/5471189/89f1f8052075/41598_2017_3770_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验