Suppr超能文献

用于非线性标量双曲守恒律的间断伽辽金方法:差商估计与精度提升

Discontinuous Galerkin methods for nonlinear scalar hyperbolic conservation laws: divided difference estimates and accuracy enhancement.

作者信息

Meng Xiong, Ryan Jennifer K

机构信息

School of Mathematics, University of East Anglia, Norwich, NR4 7TJ UK.

Department of Mathematics, Harbin Institute of Technology, Harbin, 150001 Heilongjiang China.

出版信息

Numer Math (Heidelb). 2017;136(1):27-73. doi: 10.1007/s00211-016-0833-y. Epub 2016 Aug 8.

Abstract

In this paper, an analysis of the accuracy-enhancement for the discontinuous Galerkin (DG) method applied to one-dimensional scalar nonlinear hyperbolic conservation laws is carried out. This requires analyzing the divided difference of the errors for the DG solution. We therefore first prove that the [Formula: see text]-th order [Formula: see text] divided difference of the DG error in the [Formula: see text] norm is of order [Formula: see text] when upwind fluxes are used, under the condition that [Formula: see text] possesses a uniform positive lower bound. By the duality argument, we then derive superconvergence results of order [Formula: see text] in the negative-order norm, demonstrating that it is possible to extend the Smoothness-Increasing Accuracy-Conserving filter to nonlinear conservation laws to obtain at least [Formula: see text]th order superconvergence for post-processed solutions. As a by-product, for variable coefficient hyperbolic equations, we provide an explicit proof for optimal convergence results of order [Formula: see text] in the [Formula: see text] norm for the divided differences of DG errors and thus [Formula: see text]th order superconvergence in negative-order norm holds. Numerical experiments are given that confirm the theoretical results.

摘要

本文对应用于一维标量非线性双曲守恒律的间断伽辽金(DG)方法的精度增强进行了分析。这需要分析DG解误差的差商。因此,我们首先证明,在使用迎风格式通量且[公式:见原文]具有一致正下界的条件下,DG误差在[公式:见原文]范数下的第[公式:见原文]阶[公式:见原文]差商为[公式:见原文]阶。然后通过对偶论证,我们在负阶范数下导出了[公式:见原文]阶的超收敛结果,表明可以将平滑度增加精度守恒滤波器扩展到非线性守恒律,以获得后处理解至少[公式:见原文]阶的超收敛。作为一个副产品,对于变系数双曲方程,我们为DG误差差商在[公式:见原文]范数下的最优收敛结果提供了一个明确的证明,从而在负阶范数下成立[公式:见原文]阶超收敛。给出了数值实验以证实理论结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68ff/5445630/a610e4571658/211_2016_833_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验