Meng Xiong, Ryan Jennifer K
School of Mathematics, University of East Anglia, Norwich, NR4 7TJ UK.
Department of Mathematics, Harbin Institute of Technology, Harbin, 150001 Heilongjiang China.
Numer Math (Heidelb). 2017;136(1):27-73. doi: 10.1007/s00211-016-0833-y. Epub 2016 Aug 8.
In this paper, an analysis of the accuracy-enhancement for the discontinuous Galerkin (DG) method applied to one-dimensional scalar nonlinear hyperbolic conservation laws is carried out. This requires analyzing the divided difference of the errors for the DG solution. We therefore first prove that the [Formula: see text]-th order [Formula: see text] divided difference of the DG error in the [Formula: see text] norm is of order [Formula: see text] when upwind fluxes are used, under the condition that [Formula: see text] possesses a uniform positive lower bound. By the duality argument, we then derive superconvergence results of order [Formula: see text] in the negative-order norm, demonstrating that it is possible to extend the Smoothness-Increasing Accuracy-Conserving filter to nonlinear conservation laws to obtain at least [Formula: see text]th order superconvergence for post-processed solutions. As a by-product, for variable coefficient hyperbolic equations, we provide an explicit proof for optimal convergence results of order [Formula: see text] in the [Formula: see text] norm for the divided differences of DG errors and thus [Formula: see text]th order superconvergence in negative-order norm holds. Numerical experiments are given that confirm the theoretical results.
本文对应用于一维标量非线性双曲守恒律的间断伽辽金(DG)方法的精度增强进行了分析。这需要分析DG解误差的差商。因此,我们首先证明,在使用迎风格式通量且[公式:见原文]具有一致正下界的条件下,DG误差在[公式:见原文]范数下的第[公式:见原文]阶[公式:见原文]差商为[公式:见原文]阶。然后通过对偶论证,我们在负阶范数下导出了[公式:见原文]阶的超收敛结果,表明可以将平滑度增加精度守恒滤波器扩展到非线性守恒律,以获得后处理解至少[公式:见原文]阶的超收敛。作为一个副产品,对于变系数双曲方程,我们为DG误差差商在[公式:见原文]范数下的最优收敛结果提供了一个明确的证明,从而在负阶范数下成立[公式:见原文]阶超收敛。给出了数值实验以证实理论结果。