Pariyar Shyam, Chang Shih-Chieh, Zinsmeister Daniel, Zhou Haiyang, Grantz David A, Hunsche Mauricio, Burkhardt Juergen
Institute of Crop Science and Resource Conservation, University of Bonn, Karlrobert-Kreiten-Str. 13, 53115, Bonn, Germany.
Department of Natural Resources and Environmental Studies, National Dong Hwa University, 974, Hualien, Taiwan.
Oecologia. 2017 Jul;184(3):609-621. doi: 10.1007/s00442-017-3894-4. Epub 2017 Jun 14.
Previous flux measurements in the perhumid cloud forest of northeastern Taiwan have shown efficient photosynthesis of the endemic tree species Chamaecyparis obtusa var. formosana even under foggy conditions in which leaf surface moisture would be expected. We hypothesized this to be the result of 'xeromorphic' traits of the Chamaecyparis leaves (hydrophobicity, stomatal crypts, stomatal clustering), which could prevent coverage of stomata by precipitation, fog, and condensation, thereby maintaining CO uptake. Here we studied the amount, distribution, and composition of moisture accumulated on Chamaecyparis leaf surfaces in situ in the cloud forest. We studied the effect of surface tension on gas penetration to stomata using optical O microelectrodes in the laboratory. We captured the dynamics of condensation to the leaf surfaces with an environmental scanning electron microscope (ESEM). In spite of substantial surface hydrophobicity, the mean water film thickness on branchlets under foggy conditions was 80 µm (upper surface) and 40 µm (lower surface). This amount of water could cover stomata and prevent CO uptake. This is avoided by the clustered arrangement of stomata within narrow clefts and the presence of Florin rings. These features keep stomatal pores free from water due to surface tension and provide efficient separation of plant and atmosphere in this perhumid environment. Air pollutants, particularly hygroscopic aerosol, may disturb this functionality by enhancing condensation and reducing the surface tension of leaf surface water.
此前在台湾东北部过湿云雾森林中进行的通量测量表明,即使在预计会有叶面水分的多雾条件下,特有树种台湾扁柏仍能高效进行光合作用。我们推测这是台湾扁柏叶片“旱生形态”特征(疏水性、气孔窝、气孔聚集)的结果,这些特征可以防止降水、雾气和凝结水覆盖气孔,从而维持二氧化碳的吸收。在此,我们对云雾森林中台湾扁柏叶片表面原位积累的水分数量、分布和成分进行了研究。我们在实验室中使用光学氧微电极研究了表面张力对气体渗透到气孔的影响。我们用环境扫描电子显微镜(ESEM)捕捉了叶片表面凝结的动态过程。尽管表面疏水性很强,但在有雾条件下小枝上的平均水膜厚度在上表面为80微米,在下表面为40微米。这么多的水可能会覆盖气孔并阻止二氧化碳的吸收。气孔在狭窄缝隙内的聚集排列以及弗洛林环的存在避免了这种情况。这些特征由于表面张力使气孔孔口保持无水状态,并在这种过湿环境中实现了植物与大气的有效分隔。空气污染物,尤其是吸湿性气溶胶,可能会通过增强凝结和降低叶片表面水的表面张力来干扰这种功能。