Suppr超能文献

变点检测的并行化

Parallelization of Change Point Detection.

作者信息

Song Nancy, Yang Haw

机构信息

Department of Chemistry, Princeton University, , Princeton, New Jersey 08544, United States.

出版信息

J Phys Chem A. 2017 Jul 13;121(27):5100-5109. doi: 10.1021/acs.jpca.7b04378. Epub 2017 Jun 29.

Abstract

The change point detection method ( Watkins , L. P. ; Yang , H. J. Phys. Chem. B 2005 , 109 , 617 ) allows the objective identification and isolation of abrupt changes along a data series. Because this method is grounded in statistical tests, it is particularly powerful for probing complex and noisy signals without artificially imposing a kinetics model. The original algorithm, however, has a time complexity of [Formula: see text], where N is the size of the data and is, therefore, limited in its scalability. This paper puts forth a parallelization of change point detection to address these time and memory constraints. This parallelization method was evaluated by applying it to changes in the mean of Gaussian-distributed data and found that time decreases superlinearly with respect to the number of processes (i.e., parallelization with two processes takes less than half of the time of one process). Moreover, there was minimal reduction in detection power. These results suggest that our parallelization algorithm is a viable scheme that can be implemented for other change point detection methods.

摘要

变化点检测方法(沃特金斯,L.P.;杨,H.J.《物理化学杂志B》2005年,第109卷,第617页)能够客观地识别和分离数据序列中的突变。由于该方法基于统计检验,在探测复杂且有噪声的信号时无需人为施加动力学模型,因而特别有效。然而,原始算法的时间复杂度为[公式:见原文],其中N是数据大小,所以其扩展性有限。本文提出了一种变化点检测的并行化方法来解决这些时间和内存限制问题。通过将该并行化方法应用于高斯分布数据均值的变化来进行评估,发现时间相对于进程数呈超线性减少(即两个进程并行化所需时间不到一个进程的一半)。此外,检测能力的降低极小。这些结果表明,我们的并行化算法是一种可行的方案,可用于其他变化点检测方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验