Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08540, United States.
J Phys Chem B. 2021 Dec 16;125(49):13425-13435. doi: 10.1021/acs.jpcb.1c08869. Epub 2021 Dec 6.
Recent developments in single-molecule measurement technology have expanded the capability to measure multiple parameters. These emergent modalities provide more holistic observations of complex biomolecular processes and call for new analysis methods to detect state changes in multichannel data. Here we develop an algorithm called MULLR (MUlti-channel Log-Likelihood Ratio test) to identify change points in multichannel single-molecule measurements. MULLR is an extension of the popular single-channel implementation for change point detection based on a binary segmentation and log-likelihood ratio test framework. We validate the algorithm on simulated data and characterize the power of detection and false positive rate. We show that MULLR can identify change points in experimental multichannel data and naturally works with different noise statistics and time resolutions across channels. Further, we quantify the benefit of MULLR compared to single-channel analysis. We envision that the MULLR algorithm will be useful to a range of multiparameter single-molecule measurements.
近年来,单分子测量技术的发展扩展了同时测量多个参数的能力。这些新兴模式为复杂生物分子过程提供了更全面的观察,并需要新的分析方法来检测多通道数据中的状态变化。在这里,我们开发了一种称为 MULLR(多通道似然比检验)的算法,用于识别多通道单分子测量中的变化点。MULLR 是一种基于二进制分割和似然比检验框架的流行单通道实现的扩展,用于检测变化点。我们在模拟数据上验证了该算法,并对检测能力和假阳性率进行了特征描述。我们表明,MULLR 可以识别实验多通道数据中的变化点,并且可以自然地与不同的噪声统计和跨通道的时间分辨率配合使用。此外,我们还量化了与单通道分析相比,MULLR 的优势。我们设想,MULLR 算法将对各种多参数单分子测量有用。