Suppr超能文献

参数模型测量:重塑神经心理学实践与研究中的传统测量理念。

Parametric model measurement: reframing traditional measurement ideas in neuropsychological practice and research.

作者信息

Brown Gregory G, Thomas Michael L, Patt Virginie

机构信息

a Psychology Service (116B) , VA San Diego Healthcare System , San Diego , CA , USA.

b Department of Psychiatry , University of California , San Diego , CA , USA.

出版信息

Clin Neuropsychol. 2017 Aug-Oct;31(6-7):1047-1072. doi: 10.1080/13854046.2017.1334829. Epub 2017 Jun 15.

Abstract

OBJECTIVE

Neuropsychology is an applied measurement field with its psychometric work primarily built upon classical test theory (CTT). We describe a series of psychometric models to supplement the use of CTT in neuropsychological research and test development.

METHOD

We introduce increasingly complex psychometric models as measurement algebras, which include model parameters that represent abilities and item properties. Within this framework of parametric model measurement (PMM), neuropsychological assessment involves the estimation of model parameters with ability parameter values assuming the role of test 'scores'. Moreover, the traditional notion of measurement error is replaced by the notion of parameter estimation error, and the definition of reliability becomes linked to notions of item and test information. The more complex PMM approaches incorporate into the assessment of neuropsychological performance formal parametric models of behavior validated in the experimental psychology literature, along with item parameters. These PMM approaches endorse the use of experimental manipulations of model parameters to assess a test's construct representation. Strengths and weaknesses of these models are evaluated by their implications for measurement error conditional upon ability level, sensitivity to sample characteristics, computational challenges to parameter estimation, and construct validity.

CONCLUSION

A family of parametric psychometric models can be used to assess latent processes of interest to neuropsychologists. By modeling latent abilities at the item level, psychometric studies in neuropsychology can investigate construct validity and measurement precision within a single framework and contribute to a unification of statistical methods within the framework of generalized latent variable modeling.

摘要

目的

神经心理学是一个应用测量领域,其心理测量工作主要基于经典测试理论(CTT)。我们描述了一系列心理测量模型,以补充CTT在神经心理学研究和测试开发中的应用。

方法

我们引入越来越复杂的心理测量模型作为测量代数,其中包括代表能力和项目属性的模型参数。在这个参数模型测量(PMM)框架内,神经心理学评估涉及通过将能力参数值假定为测试“分数”来估计模型参数。此外,传统的测量误差概念被参数估计误差概念所取代,可靠性的定义与项目和测试信息的概念相关联。更复杂的PMM方法将在实验心理学文献中得到验证的行为正式参数模型以及项目参数纳入神经心理学表现的评估中。这些PMM方法支持使用对模型参数的实验操作来评估测试的结构表征。通过它们对能力水平条件下测量误差的影响、对样本特征的敏感性、参数估计的计算挑战以及结构效度来评估这些模型的优缺点。

结论

一系列参数心理测量模型可用于评估神经心理学家感兴趣的潜在过程。通过在项目层面建模潜在能力,神经心理学中的心理测量研究可以在单一框架内研究结构效度和测量精度,并有助于在广义潜在变量建模框架内统一统计方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验