Suppr超能文献

Stability of continuous and fed batch sequential anaerobic-anoxic-aerobic moving bed bioreactor systems at phenol shock load application.

作者信息

Sahariah Biju Prava, Anandkumar J, Chakraborty Saswati

机构信息

a Centre for the Environment , Indian Institute of Technology Guwahati , Guwahati , Assam , India.

b Department of Chemical Engineering , National Institute of Technology Raipur , Raipur , Chhattisgarh , India.

出版信息

Environ Technol. 2018 Aug;39(15):1898-1907. doi: 10.1080/09593330.2017.1343388. Epub 2017 Jun 26.

Abstract

The stability of two sequential moving bed bioreactor systems operated in anaerobic-anoxic-aerobic continuous moving bed bioreactor (CMBR: R1-R2-R3) and semi-continuous fed batch moving bed bioreactor (FMBR: B1-B2-B3) modes was assessed for phenol shock load (PSL) applications in the presence of thiocyanate and ammonia. Both the systems were exposed to 3000 mg phenol/L (PSL-I) and 3500 mg phenol/L (PSL-II) for 3 days each from initial 2500 mg phenol/L without any intermediate concentration at 6 days HRT (hydraulic retention time). The effect of PSL-I on R1 was reversible within 10-12 days. At PSL-II, R1 required 2 days stop of feed for stability and resumed removal efficiency of phenol (15%) and COD (3%). R2 remained robust to sustain both PSLs and recovered within 15 days from peak influent concentrations of 1727 mg phenol/L (removal: 67%) and 324 mg SCN--/L (removal: 68-70%). In B1, effluent COD increased by 2%, though effluent phenol decreased by 3% than the pre-shock condition after PSL-I exposure. B2 acted similar to R2 when exposed to PSLs. The effect of PSL-I on R3 and B3 was negligible. However, at PSL-II R3 became vulnerable for nitrification, whereas phenol, COD and SCN- removal remained unaffected. In B3, PSL-II caused a decrease in phenol, SCN- and NH+4-N removal. In B3, stop of feed for 4 days also did not improve nitrification. The performance of the CMBR system was better than that of the FMBR system for organic shock load exposure in the presence of multiple pollutants.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验