Suppr超能文献

能够解码转录因子动力学的网络基元。

Network Motifs Capable of Decoding Transcription Factor Dynamics.

机构信息

Center for Quantitative Biology, Peking University, Beijing, 100871, China.

Department of Physics, Tsinghua University, Beijing, 100084, China.

出版信息

Sci Rep. 2018 Feb 26;8(1):3594. doi: 10.1038/s41598-018-21945-2.

Abstract

Transcription factors (TFs) can encode the information of upstream signal in terms of its temporal activation dynamics. However, it remains unclear how different types of TF dynamics are decoded by downstream signalling networks. In this work, we studied all three-node transcriptional networks for their ability to distinguish two types of TF dynamics: amplitude modulation (AM), where the TF is activated with a constant amplitude, and frequency modulation (FM), where the TF activity displays an oscillatory behavior. We found two sets of network topologies: one set can differentially respond to AM TF signal but not to FM; the other set to FM signal but not to AM. Interestingly, there is little overlap between the two sets. We identified the prevalent topological features in each set and gave a mechanistic explanation as to why they can differentially respond to only one type of TF signal. We also found that some network topologies have a weak (not robust) ability to differentially respond to both AM and FM input signals by using different values of parameters for AM and FM cases. Our results provide a novel network mechanism for decoding different TF dynamics.

摘要

转录因子 (TFs) 可以根据上游信号的时间激活动态来编码信息。然而,目前尚不清楚下游信号网络如何解码不同类型的 TF 动力学。在这项工作中,我们研究了所有三种节点转录网络,以研究它们区分两种 TF 动力学的能力:幅度调制 (AM),其中 TF 以恒定幅度激活,以及频率调制 (FM),其中 TF 活性表现出振荡行为。我们发现了两组网络拓扑结构:一组可以对 AM TF 信号做出不同的响应,但不能对 FM 信号做出不同的响应;另一组可以对 FM 信号做出不同的响应,但不能对 AM 信号做出不同的响应。有趣的是,这两组之间几乎没有重叠。我们确定了每组中普遍存在的拓扑特征,并给出了为什么它们只能对一种类型的 TF 信号做出不同的响应的机制解释。我们还发现,一些网络拓扑结构通过使用 AM 和 FM 情况下的不同参数值,具有较弱(非鲁棒)的区分 AM 和 FM 输入信号的能力。我们的研究结果为解码不同的 TF 动力学提供了一种新的网络机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/895b/5827039/77d62985cc4c/41598_2018_21945_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验