Suppr超能文献

在金属-有机骨架内原位合成超细微金属纳米粒子用于高效多相催化。

In situ biosynthesis of ultrafine metal nanoparticles within a metal-organic framework for efficient heterogeneous catalysis.

机构信息

Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China.

出版信息

Nanotechnology. 2017 Sep 8;28(36):365604. doi: 10.1088/1361-6528/aa79e1. Epub 2017 Jun 15.

Abstract

The synthesis of ultrafine, uniform, well-dispersed functional nanoparticles (NPs) under mild conditions in a controlled manner remains a great challenge. In biological systems, a well-defined biomineralization process is exploited, in which the control over NPs' size, shape and distribution is temporally and spatially regulated by a variety of biomolecules in a confined space. Inspired by this, we embedded proteins into metal-organic frameworks (MOFs) and explored a novel approach to synthesize metallic NPs by taking the synergy of protein-induced biomineralization process and space-confined effect of MOFs. The generation and growth of ultrafine metal NPs (Ag or Au) was induced by the entrapped lysozyme molecules and confined by the ZIF-8 pores. Due to the narrow size distribution and homogeneous spatial distribution of metal NPs, the as-synthesized NPs exhibit remarkably elevated catalytic activity. These findings demonstrate that MOFs can be loaded with specific proteins to selectively deposit inorganic NPs via biomimetic mineralization and these novel kinds of nanohybrid materials may find applications in catalysis, sensing and optics.

摘要

在温和条件下以可控的方式合成超精细、均匀、分散良好的功能纳米粒子(NPs)仍然是一个巨大的挑战。在生物系统中,利用了一种明确的生物矿化过程,其中通过各种生物分子在受限空间中的时空调节来控制 NPs 的尺寸、形状和分布。受此启发,我们将蛋白质嵌入金属有机骨架(MOFs)中,并通过利用蛋白质诱导的生物矿化过程和 MOFs 的空间限制效应,探索了一种合成金属 NPs 的新方法。通过包埋的溶菌酶分子诱导超细金属 NPs(Ag 或 Au)的生成和生长,并被 ZIF-8 孔限制。由于金属 NPs 的尺寸分布狭窄且空间分布均匀,所合成的 NPs 表现出显著提高的催化活性。这些发现表明,MOFs 可以负载特定的蛋白质,通过仿生矿化选择性地沉积无机 NPs,这些新型纳米杂化材料可能在催化、传感和光学等领域得到应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验