Abbasi Samira, Hudson Amber E, Maran Selva K, Cao Ying, Abbasi Ataollah, Heck Detlef H, Jaeger Dieter
Department of Biology, Emory University, Atlanta, GA, United States of America.
Department of Biomedical Engineering, Hamedan University of Technology, Hamedan, Iran.
PLoS Comput Biol. 2017 Jun 15;13(6):e1005578. doi: 10.1371/journal.pcbi.1005578. eCollection 2017 Jun.
Neural coding through inhibitory projection pathways remains poorly understood. We analyze the transmission properties of the Purkinje cell (PC) to cerebellar nucleus (CN) pathway in a modeling study using a data set recorded in awake mice containing respiratory rate modulation. We find that inhibitory transmission from tonically active PCs can transmit a behavioral rate code with high fidelity. We parameterized the required population code in PC activity and determined that 20% of PC inputs to a full compartmental CN neuron model need to be rate-comodulated for transmission of a rate code. Rate covariance in PC inputs also accounts for the high coefficient of variation in CN spike trains, while the balance between excitation and inhibition determines spike rate and local spike train variability. Overall, our modeling study can fully account for observed spike train properties of cerebellar output in awake mice, and strongly supports rate coding in the cerebellum.
通过抑制性投射通路的神经编码仍未得到充分理解。我们在一项建模研究中分析了浦肯野细胞(PC)到小脑核(CN)通路的传递特性,该研究使用了在清醒小鼠中记录的包含呼吸频率调制的数据集。我们发现,来自持续活跃的PC的抑制性传递能够高保真地传递行为速率编码。我们对PC活动中所需的群体编码进行了参数化,并确定对于完整的全细胞CN神经元模型,20%的PC输入需要进行速率共调制才能传递速率编码。PC输入中的速率协方差也解释了CN尖峰序列的高变异系数,而兴奋与抑制之间的平衡决定了尖峰速率和局部尖峰序列的变异性。总体而言,我们的建模研究能够充分解释清醒小鼠中观察到的小脑输出尖峰序列特性,并有力地支持了小脑中的速率编码。