Suppr超能文献

浦肯野细胞至深部小脑核神经元突触的缓慢短期抑制有助于在 2 秒以上的时间窗口内实现增益控制和线性编码。

A Slow Short-Term Depression at Purkinje to Deep Cerebellar Nuclear Neuron Synapses Supports Gain-Control and Linear Encoding over Second-Long Time Windows.

机构信息

Department for Cognitive Neurology, Hertie-Institute for Clinical Brain Research, 72076 Tübingen, Germany

Systems Neurophysiology, Werner Reichardt Center for Integrative Neuroscience, University Tübingen, 72076 Tübingen, Germany.

出版信息

J Neurosci. 2020 Jul 29;40(31):5937-5953. doi: 10.1523/JNEUROSCI.2078-19.2020. Epub 2020 Jun 17.

Abstract

Modifications in the sensitivity of neural elements allow the brain to adapt its functions to varying demands. Frequency-dependent short-term synaptic depression (STD) provides a dynamic gain-control mechanism enabling adaptation to different background conditions alongside enhanced sensitivity to input-driven changes in activity. In contrast, synapses displaying frequency-invariant transmission can faithfully transfer ongoing presynaptic rates enabling linear processing, deemed critical for many functions. However, rigid frequency-invariant transmission may lead to runaway dynamics and low sensitivity to changes in rate. Here, I investigated the Purkinje cell to deep cerebellar nuclei neuron synapses (PC_DCNs), which display frequency invariance, and yet, PCs maintain background activity at disparate rates, even at rest. Using protracted PC_DCN activation (120 s) to mimic background activity in cerebellar slices from mature mice of both sexes, I identified a previously unrecognized, frequency-dependent, slow STD (S-STD), adapting IPSC amplitudes in tens of seconds to minutes. However, after changes in activation rates, over a behavior-relevant second-long time window, S-STD enabled scaled linear encoding of PC rates in synaptic charge transfer and DCN spiking activity. Combined electrophysiology, optogenetics, and statistical analysis suggested that S-STD mechanism is input-specific, involving decreased ready-to-release quanta, and distinct from faster short-term plasticity (f-STP). Accordingly, an S-STD component with a scaling effect (i.e., activity-dependent release sites inactivation), extending a model explaining PC_DCN release on shorter timescales using balanced f-STP, reproduced the experimental results. Thus, these results elucidates a novel slow gain-control mechanism able to support linear transfer of behavior-driven/learned PC rates concurrently with background activity adaptation, and furthermore, provides an alternative pathway to refine PC output. The brain can adapt to varying demands by dynamically changing the gain of its synapses; however, some tasks require ongoing linear transfer of presynaptic rates, seemingly incompatible with nonlinear gain adaptation. Here, I report a novel slow gain-control mechanism enabling scaled linear encoding of presynaptic rates over behavior-relevant time windows, and adaptation to background activity at the Purkinje to deep cerebellar nuclear neurons synapses (PC_DCNs). A previously unrecognized PC_DCNs slow and frequency-dependent short-term synaptic depression (S-STD) mediates this process. Experimental evidence and simulations suggested that scaled linear encoding emerges from the combination of S-STD slow dynamics and frequency-invariant transmission at faster timescales. These results demonstrate a mechanism reconciling rate code with background activity adaptation and suitable for flexibly tuning PCs output via background activity modulation.

摘要

神经元敏感性的改变使大脑能够根据不同的需求调整其功能。频率依赖性的短期突触抑制(STD)提供了一种动态增益控制机制,使大脑能够适应不同的背景条件,同时增强对活动中输入驱动变化的敏感性。相比之下,表现出频率不变传递的突触可以忠实地传递持续的突触前速率,从而实现线性处理,这被认为对许多功能至关重要。然而,刚性的频率不变传递可能导致失控的动力学和对速率变化的低敏感性。在这里,我研究了显示频率不变性的浦肯野细胞到小脑深部核神经元突触(PC_DCNs),尽管如此,浦肯野细胞仍能在不同的背景速率下维持背景活动,即使在休息时也是如此。通过长时间(120 秒)激活 PC_DCN 来模拟成熟雌雄小鼠小脑切片中的背景活动,我发现了一种以前未被识别的、频率依赖性的缓慢 STD(S-STD),它能在数十秒到数分钟内适应 IPSC 幅度。然而,在激活率发生变化后,在一个与行为相关的 2 秒长的时间窗口内,S-STD 能够以突触电荷传递和 DCN 放电活动的比例线性编码 PC 速率。电生理学、光遗传学和统计分析的结合表明,S-STD 机制是输入特异性的,涉及到减少准备释放的量子数,并且与更快的短期可塑性(f-STP)不同。因此,一种具有缩放效应的 S-STD 成分(即活动依赖性释放位点失活),扩展了一个使用平衡 f-STP 来解释 PC_DCN 在较短时间尺度上释放的模型,复制了实验结果。因此,这些结果阐明了一种新的慢增益控制机制,能够支持行为驱动/学习的 PC 速率在相关时间尺度上的线性传递,同时适应背景活动,并且为进一步细化 PC 输出提供了另一种途径。大脑可以通过动态改变突触的增益来适应不同的需求;然而,有些任务需要持续的线性传递突触前速率,这似乎与非线性增益适应不兼容。在这里,我报告了一种新的慢增益控制机制,它能够在与行为相关的时间窗口内对突触前速率进行比例线性编码,并在浦肯野到小脑深部核神经元突触(PC_DCNs)上适应背景活动。一种以前未被识别的 PC_DCNs 缓慢的和频率依赖性的短期突触抑制(S-STD)介导了这一过程。实验证据和模拟表明,比例线性编码是由 S-STD 缓慢动力学和更快时间尺度上的频率不变传递的组合产生的。这些结果表明,一种机制协调了速率码与背景活动适应,并适合通过背景活动调制灵活地调整 PC 输出。

相似文献

本文引用的文献

9
A liquid phase of synapsin and lipid vesicles.突触结合蛋白和脂质小泡的液相。
Science. 2018 Aug 10;361(6402):604-607. doi: 10.1126/science.aat5671. Epub 2018 Jul 5.
10
Doc2-mediated superpriming supports synaptic augmentation.Doc2 介导的超引发支持突触增强。
Proc Natl Acad Sci U S A. 2018 Jun 12;115(24):E5605-E5613. doi: 10.1073/pnas.1802104115. Epub 2018 May 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验