Nakamura K, Oliver C, Stadtman E R
Arch Biochem Biophys. 1985 Jul;240(1):319-29. doi: 10.1016/0003-9861(85)90037-2.
Several mixed-function oxidation systems catalyze inactivation of Escherichia coli glutamine synthetase and other key metabolic enzymes. In the presence of NADPH and molecular oxygen, highly purified preparations of cytochrome P-450 reductase and cytochrome P-450 (isozyme 2) from rabbit liver microsomes catalyze enzyme inactivation. The inactivation reaction is stimulated by Fe(III) or Cu(II) and is inhibited by catalase, Mn(II), Zn(II), histidine, and the metal chelators o-phenanthroline and EDTA. The inactivation of glutamine synthetase is highly specific and involves the oxidative modification of a histidine in each glutamine synthetase subunit and the generation of a carbonyl derivative of the protein which forms a stable hydrazone when treated with 2,4-dinitrophenylhydrazine. We have proposed that the mixed-function oxidation system (the cytochrome P-450 system) produces Fe(II) and H2O2 which react at the metal binding site on the glutamine synthetase to generate an activated oxygen species which oxidizes a nearby susceptible histidine. This thesis is supported by the fact that (a) Mn(II) and Zn(II) inhibit inactivation and also interfere with the reduction of Fe(III) to Fe(II) by the P-450 system; (b) Fe(II) and H2O2 (anaerobically), in the absence of a P-450 system, catalyze glutamine synthetase inactivation; (c) inactivation is inhibited by catalase; and (d) hexobarbital, which stimulates the rate of H2O2 production by the P-450 system, stimulates the rate of glutamine synthetase inactivation. Moreover, inactivation of glutamine synthetase by the P-450 system does not require complex formation because inactivation occurs when the P-450 components and the glutamine synthetase are separated by a semipermeable membrane. Also, if endogenous catalase is inhibited by azide, rabbit liver microsomes catalyze the inactivation of glutamine synthetase.
几种混合功能氧化系统可催化大肠杆菌谷氨酰胺合成酶及其他关键代谢酶的失活。在存在烟酰胺腺嘌呤二核苷酸磷酸(NADPH)和分子氧的情况下,来自兔肝微粒体的高度纯化的细胞色素P - 450还原酶和细胞色素P - 450(同工酶2)制剂可催化酶失活。失活反应受铁(III)或铜(II)刺激,并受过氧化氢酶、锰(II)、锌(II)、组氨酸以及金属螯合剂邻菲罗啉和乙二胺四乙酸(EDTA)抑制。谷氨酰胺合成酶的失活具有高度特异性,涉及每个谷氨酰胺合成酶亚基中一个组氨酸的氧化修饰以及蛋白质羰基衍生物的生成,该衍生物在用2,4 - 二硝基苯肼处理时形成稳定的腙。我们提出混合功能氧化系统(细胞色素P - 450系统)产生亚铁(Fe(II))和过氧化氢(H₂O₂),它们在谷氨酰胺合成酶的金属结合位点发生反应,生成一种活性氧物种,该物种氧化附近易感的组氨酸。这一论点得到以下事实的支持:(a)锰(II)和锌(II)抑制失活,并且还干扰细胞色素P - 450系统将铁(III)还原为亚铁(Fe(II));(b)在不存在细胞色素P - 450系统的情况下,亚铁(Fe(II))和过氧化氢(H₂O₂)(厌氧条件下)催化谷氨酰胺合成酶失活;(c)失活受过氧化氢酶抑制;(d)己巴比妥刺激细胞色素P - 450系统产生过氧化氢的速率,同时也刺激谷氨酰胺合成酶失活的速率。此外,细胞色素P - 450系统对谷氨酰胺合成酶的失活不需要形成复合物,因为当细胞色素P - 450组分和谷氨酰胺合成酶被半透膜分隔时也会发生失活。而且,如果内源性过氧化氢酶被叠氮化物抑制,兔肝微粒体可催化谷氨酰胺合成酶失活。