Stadtman E R, Wittenberger M E
Arch Biochem Biophys. 1985 Jun;239(2):379-87. doi: 10.1016/0003-9861(85)90703-9.
Previous studies have shown that several mixed-function oxidation (MFO) systems are capable of catalyzing the inactivation of glutamine synthetase (GS) [R.L. Levine, C. N. Oliver, R. M. Fulks, and E. R. Stadtman (1978) Proc. Natl. Acad. Sci. USA 78, 2120-2124] and a number of the other enzymes [L. Fucci, C. N. Oliver, M. J. Coon, and E. R. Stadtman (1983) Proc. Natl. Acad. Sci. USA 80, 1521-1525]. It has now been found that in the presence of Fe(III), O2, and an appropriate electron donor (hypoxanthine or NADPH, respectively) glutamine synthetase is also inactivated by either milk xanthine oxidase or Clostridial nicotinate hydroxylase. Inactivation of glutamine synthetase by either of these flavoproteins is greatly stimulated by the presence of electron carrier proteins possessing nonheme-iron-sulfur (NHIS) clusters (i.e., ferredoxin or putidaredoxin) or by the presence of menadione. The inactivation reactions are partially inhibited by free radical scavengers, superoxide dismutase, (SOD), histidine, mannitol, dimethyl sulfoxide, and dimethylthiourea, and are inhibited completely by either Mn(II), EDTA, or catalase. The sensitivity to SOD inhibition is greatly suppressed when the xanthine oxidase system is supplemented with either ferredoxin or redoxin. In the presence of the latter NHIS-proteins (and only when they are present), MFO systems, comprised of either horseradish peroxidase and H2O2 or glucose oxidase, O2, and glucose, can also catalyze the inactivation of GS. The ability of ferredoxin and putidaredoxin to promote oxidation modification of GS by any one of these MFO systems suggests that proteins with NHIS centers may mediate the generation (or stabilization) of highly reactive radical intermediates.
先前的研究表明,几种混合功能氧化(MFO)系统能够催化谷氨酰胺合成酶(GS)的失活[R.L. 莱文、C.N. 奥利弗、R.M. 富尔克斯和E.R. 斯塔德曼(1978年)《美国国家科学院院刊》78卷,2120 - 2124页]以及许多其他酶[L. 富奇、C.N. 奥利弗、M.J. 库恩和E.R. 斯塔德曼(1983年)《美国国家科学院院刊》80卷,1521 - 1525页]。现在已经发现,在Fe(III)、O₂和合适的电子供体(分别为次黄嘌呤或NADPH)存在的情况下,谷氨酰胺合成酶也会被牛奶黄嘌呤氧化酶或梭菌烟酸羟化酶失活。这两种黄素蛋白中的任何一种对谷氨酰胺合成酶的失活作用,都会因具有非血红素铁硫(NHIS)簇的电子载体蛋白(即铁氧化还原蛋白或恶臭假单胞菌铁氧化还原蛋白)的存在,或因甲萘醌的存在而受到极大促进。失活反应会被自由基清除剂、超氧化物歧化酶(SOD)、组氨酸、甘露醇、二甲基亚砜和二甲基硫脲部分抑制,并被Mn(II)、EDTA或过氧化氢酶完全抑制。当黄嘌呤氧化酶系统补充铁氧化还原蛋白或视黄还原蛋白时,对SOD抑制的敏感性会大大降低。在后者NHIS蛋白存在的情况下(且只有当它们存在时),由辣根过氧化物酶和H₂O₂或葡萄糖氧化酶、O₂和葡萄糖组成的MFO系统也能催化GS的失活。铁氧化还原蛋白和恶臭假单胞菌铁氧化还原蛋白通过这些MFO系统中的任何一种促进GS氧化修饰的能力表明,具有NHIS中心的蛋白质可能介导高反应性自由基中间体的产生(或稳定)。