Department of Neurology, Medical Faculty, Heinrich-Heine Universität, Düsseldorf, 40225, Germany.
Max-Planck-Institut für Chemische Energiekonversion, Mülheim/Ruhr, 45470, Germany.
Glia. 2017 Sep;65(9):1521-1534. doi: 10.1002/glia.23178. Epub 2017 Jun 15.
Demyelinated brain lesions, a hallmark of autoimmune neuroinflammatory diseases like multiple sclerosis, result from oligodendroglial cell damage. Activated microglia are considered a major source of nitric oxide and subsequent peroxynitrite-mediated damage of myelin. Here, we provide biochemical and biophysical evidence that the oxidoreductase glutaredoxin 2 inhibits peroxynitrite formation by transforming nitric oxide into dinitrosyl-diglutathionyl-iron-complexes. Glutaredoxin 2 levels influence both survival rates of primary oligodendrocyte progenitor cells and preservation of myelin structure in cerebellar organotypic slice cultures challenged with activated microglia or nitric oxide donors. Of note, glutaredoxin 2-mediated protection is not linked to its enzymatic activity as oxidoreductase, but to the disassembly of its uniquely coordinated iron-sulfur cluster using glutathione as non-protein ligand. The protective effect of glutaredoxin 2 is connected to decreased protein carbonylation and nitration. In line, brain lesions of mice suffering from experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis, show decreased glutaredoxin 2 expression and increased nitrotyrosine formation indicating that this type of protection is missing in the inflamed central nervous system. Our findings link inorganic biochemistry to neuroinflammation and identify glutaredoxin 2 as a protective factor against neuroinflammation-mediated myelin damage. Thus, improved availability of glutathione-coordinated iron-sulfur clusters emerges as a potential therapeutic approach in inflammatory demyelination.
脱髓鞘脑损伤是多发性硬化等自身免疫性神经炎症性疾病的标志,源于少突胶质细胞损伤。活化的小胶质细胞被认为是一氧化氮的主要来源,随后是过氧亚硝酸盐介导的髓鞘损伤。在这里,我们提供生化和生物物理证据表明,氧化还原酶谷胱甘肽过氧化物酶 2 通过将一氧化氮转化为二硝酰基-二谷胱甘肽-铁复合物来抑制过氧亚硝酸盐的形成。谷胱甘肽过氧化物酶 2 的水平影响原代少突胶质细胞前体细胞的存活率和小脑器官型切片培养中髓鞘结构的保存,这些培养物受到活化的小胶质细胞或一氧化氮供体的挑战。值得注意的是,谷胱甘肽过氧化物酶 2 介导的保护作用与其作为氧化还原酶的酶活性无关,而是与使用谷胱甘肽作为非蛋白配体分解其独特协调的铁-硫簇有关。谷胱甘肽过氧化物酶 2 的保护作用与蛋白质羰基化和硝化减少有关。与此一致,患有实验性自身免疫性脑脊髓炎(多发性硬化症的动物模型)的小鼠的脑损伤显示谷胱甘肽过氧化物酶 2 表达减少和硝基酪氨酸形成增加,表明这种类型的保护在炎症性中枢神经系统中缺失。我们的研究结果将无机生物化学与神经炎症联系起来,并确定谷胱甘肽过氧化物酶 2 是一种针对神经炎症介导的髓鞘损伤的保护因子。因此,改善谷胱甘肽协调的铁-硫簇的可用性可能成为炎症性脱髓鞘的一种潜在治疗方法。