Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, USA.
Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA.
Phys Rev E. 2017 May;95(5-1):052401. doi: 10.1103/PhysRevE.95.052401. Epub 2017 May 1.
We present a statistical-mechanical model for the behavior of intertwined DNAs, with a focus on their torque and extension as a function of their catenation (linking) number and applied force, as studied in magnetic tweezers experiments. Our model produces results in good agreement with available experimental data and predicts a catenation-dependent effective twist modulus distinct from what is observed for twisted individual double-helix DNAs. We find that buckling occurs near the point where experiments have observed a kink in the extension versus linking number, and that the subsequent "supercoiled braid" state corresponds to a proliferation of multiple small plectoneme structures. We predict a discontinuity in extension at the buckling transition corresponding to nucleation of the first plectoneme domain. We also find that buckling occurs for lower linking number at lower salt; the opposite trend is observed for supercoiled single DNAs.
我们提出了一个统计力学模型来描述纠缠 DNA 的行为,重点研究了它们在磁镊实验中作为其连接数和所施加力的函数的扭矩和延伸。我们的模型产生的结果与现有实验数据吻合良好,并预测了一种与扭曲的单个双螺旋 DNA 不同的、依赖于连接数的有效扭转模量。我们发现,在实验观察到延伸与连接数的拐点附近会发生屈曲,而随后的“超螺旋辫状结构”对应于多个小的旋绕结构的增殖。我们预测在屈曲转变处会出现延伸的不连续性,这对应于第一个旋绕域的成核。我们还发现,在较低盐度下,较低的连接数会导致屈曲;而对于超螺旋的单个 DNA,则观察到相反的趋势。